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Abstract
Aquatic ecosystem recovery from anthropogenic degradation can be hampered by internal feedbacks that sta-

bilize undesirable states. The challenges of managing and predicting alternative states in lakes are well known,
but state shifts in rivers and their attendant effects on ecosystem function remain understudied despite strong
recent evidence that such shifts can and do occur. Using three decades of measurements of key state variables
such as turbidity, nutrient concentrations, Corbicula fluminea clam densities, and chlorophyll a, including
hourly dissolved oxygen, we investigated a sudden shift from phytoplankton to macrophyte dominance in the
middle Loire River (France), and its associated effects on the rivers metabolic regime. We show, instead, that
despite large and synchronous shifts across all state variables, changes in gross primary production and ecosys-
tem respiration were modest (25% and 14% declines, respectively) and that these shifts lagged the ecosystem
state changes by a decade or more. The shift to a macrophyte-dominated state reduced the sensitivity of primary
production to abiotic drivers, altered element cycling efficiency, flipped the net carbon balance from positive to
negative, and, crucially, weakened the temporal coupling between production and respiration. This weakened
coupling, detected using Granger causality, increased the temporal autocorrelation of net ecosystem production,
yielding a robust early warning indicator of both state- and metabolic-shifts that may provide valuable guidance
for river restoration.

Abrupt shifts in aquatic ecosystem state, generally between
starkly contrasting autotrophic communities (Scheffer and
Jeppesen 2007; de Tezanos Pinto and O’Farrell 2014), are
linked to changes in the internal feedbacks that define system
resilience. These state shifts can occur in response to enrich-
ment of a growth-limiting nutrient (Jarvie et al. 2013), altered
food-web structure (Carpenter et al. 2011), and changing dis-
turbance regimes (Heffernan 2008). Anticipating these state
shifts, and recovering from them, is a major practical and the-
oretical challenge (European Environmental Commis-
sion 1991; Biggs et al. 2009), particularly given the long lags
between remedial actions and ecosystem responses that can
occur when undesirable states are themselves resilient. Under-
standing and predicting the trajectory of state shifts in

managed aquatic ecosystems is crucial for maintaining stake-
holder engagement, and accurately attributing observed
changes to specific remedial actions.

Aquatic ecosystem state shifts are well-documented in shal-
low lakes (Scheffer and Jeppesen 2007) and estuaries (Cohen
et al. 1984), but are less common in rivers (Jarvie et al. 2013;
Capon et al. 2015). The high nutrient availability due to con-
stant upstream replenishment (King et al. 2014; Covino
et al. 2018), short hydrochemical residence times, and intrin-
sic hydrological disturbance regimes of most rivers suggest
that the internal stabilizing feedbacks necessary to induce
resilient states are, in relation to lakes, comparatively weak or
nonexistent (Hilton et al. 2006; Hilt 2015). However, evidence
suggests that some large rivers do exhibit state shifts analo-
gous to those of shallow lakes. A state shift returning from
eutrophic, phytoplankton dominance to oligotrophic, macro-
phyte dominance (i.e., re-oligotrophication) has been attrib-
uted to reduced phosphorus loading (Hilt et al. 2011; Ib�añez
et al. 2012; Ib�añez and Peñuelas 2019) and top-down control
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from invasive Corbicula fluminea clams (Minaudo et al. 2020).
Still, the causes and time scales of these changes—which help
focus remedial actions, calibrate public expectations, and set
meaningful interim management targets—remain poorly
constrained.

The amplification of planktonic biomass production under
eutrophic conditions (Smith et al. 1999) suggests a coherence
between ecosystem state and ecosystem metabolic regime.
Ecosystem metabolism, which describes the magnitude of
gross primary production (GPP) and ecosystem respiration
(ER), has a rich legacy of measurement in lotic systems
(Odum 1956) and is a foundational part of stream ecosystem
theory (Vannote et al. 1980). Yet, despite broad understanding
on environmental controls (Mulholland et al. 2001) and more
recently on spatiotemporal regimes (Koenig et al. 2019; Savoy
et al. 2019), little is known regarding how metabolism and its
sensitivity to environmental drivers change under contrasting
autotrophic communities (e.g., those dominated by rooted
macrophytes vs. those dominated by phytoplankton). Indeed,
the magnitude and timing of the coupling between ecosystem
state shifts and metabolic functions has only been described
recently in lakes (Hilt et al. 2017), and remains entirely
unknown in rivers (Williamson et al. 2008; Palmer and
Ruhi 2019). Recent growth in long time series of dissolved
oxygen (DO; Bernhardt et al. 2018) and model estimation of
GPP and ER in flowing water systems (Appling et al. 2018)
enable new insights into metabolic variation and controls
across time scales. These modern tools have only recently
been used to explore the functional consequences of changing
river management (Arroita et al. 2019), but have yet to be used
to evaluate the character of ecosystem state shifts.

Large rivers provide valuable ecosystem functions, includ-
ing substantial biotic processing of macronutrients (Seitzinger
et al. 2002; Cohen et al. 2013) and (Cole et al. 2007; Escoffier
et al. 2018). Because these biogeochemical functions derive
from a river’s metabolic activity, a putative regime shift in
metabolism will likely induce shifts in biogeochemical cycling
and process rates, but the mode, timing, and magnitude of
these shifts are unknown. For example, the degree of coupling
between GPP and ER—i.e., how rapidly C produced by auto-
trophs is consumed (Hall and Beaulieu 2013; Hotchkiss and
Hall 2015)—is a function of the quality and distribution of
internal organic matter stocks, with planktonic algae more
readily consumed (Lair and Reyes-Marchant 1997) than mac-
rophtyes (del Giorgio and Williams 2005). Moreover, lower C
storage in a planktonic state compared to a macrophyte state
(because plankton are readily exported from the system and
lack roots to stabilize sediment organic matter) may reduce
the temporal stability of C stocks available for consumption.
Critically, changes to GPP-ER coupling and C storage under
different autotrophic communities may lead to shifts in mode,
magnitude, and temporal patterns of net ecosystem productiv-
ity (NEP = GPP + ER; where ER is negative in sign).

In aquatic ecosystems, regime shifts from oligotrophic to
eutrophic conditions are presaged by “early warning signals”
(Scheffer et al. 2015), which can aid managers seeking to
anticipate critical transitions or even prevent them from tak-
ing place (Biggs et al. 2009). These early warning signals (Gsell
et al. 2016) generally result from declining ecosystem state
resilience and are theoretically and empirically manifest in
time series properties of state variables like phytoplankton bio-
mass, or phosphorus concentration. Specifically, the early
warning signals include increases in temporal autocorrelation
(Batt et al. 2013), variance (Carpenter and Brock 2006), and
skewness (Guttal and Jayaprakash 2008). However, nearly all
early warning signal applications in aquatic ecosystems have
been used to detect the onset of phytoplankton dominance,
and have almost exclusively employed state variables, as
opposed to process rate time series (though see Batt
et al. 2013). As such, open questions remain regarding the
detection of regime shifts in the opposite direction (i.e., re-oli-
gotrophication), and applicability of process rate time series,
like ecosystem metabolism, to predict state transitions.

We focus here on the changes that shifts in river ecosystem
state have on function in the Loire River in France, a mini-
mally disturbed large river with detailed ecological and
hydrochemical monitoring, including 25 yr of hourly DO
measurements. The middle Loire River recently underwent a
dramatic re-oligotrophication shift (Minaudo et al. 2015,
2020), manifested as sudden declining concentrations of
phosphorus, algal pigments, and turbidity during the summer
growing season. We first investigated how and when these
ecosystem state changes influenced the river metabolic
regime. We further used these rich datasets to evaluate early
warning indicators of shifts in ecosystem state (i.e., phyto-
plankton to macrophyte dominance) and metabolic regimes
(Scheffer et al. 2015). Specifically, we tested four linked
hypotheses. First, we hypothesized that the observed dramatic
decreases in phytoplankton biomass in the middle Loire River
are indeed a regime shift to an alternative stable state. This
leads to the prediction that state changes are discrete, syn-
chronous, and durable. Second, we hypothesized that the river
metabolic regime shifted synchronously with ecosystem state
changes in the Loire River. This leads to the prediction that
change-points in both state and process time series occur at
the same time. Third, we hypothesized that any metabolic
regime shift would be accompanied by changes to linked bio-
geochemical processes. Specifically, we predicted declining
sensitivity of primary production to abiotic controls (e.g.,
flow, light, temperature), decreased elemental (i.e., C and N)
removal efficiency, and a shift in the balance of GPP and ER
toward heterotrophy in association with decreased temporal
coupling between these metabolic processes prompted by the
switch to macrophyte dominance. Finally, we hypothesized
that both ecosystem state and metabolic regime shifts can be
predicted with early warning indicators derived from both
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ecosystem state and process rates. Moreover, given the expec-
tation that the temporal coupling of GPP and ER declines in
the macrophyte state, we predicted that time series of their
metabolic balance (i.e., NEP) will yield insights about incipient
shifts.

Methods
Site description

The 10-km study reach is located on the upper section of
the middle Loire, France, between Saint-Satur (47.3�N 2.9�E)
and Dampierre-en-Burly (47.4�N; 2.3�E). In this reach, the
Loire is an 8th-order river, with a catchment area of
35,500 km2, a mean width of 250 m and a mean depth of 1 m
during summer base flow. Dampierre-en-Burly is at an altitude
of 123 m a.s.l., 110 km downstream from the confluence with
the Allier River and 550 km from the Loire’s source. The
region is dominated by calcareous bedrock and sedimentary
alluvial valleys (Baratelli et al. 2016). The middle Loire has a
shallow bed slope (0.44 m km�1) and wide, braided channels
flowing over calcareous tables and around vegetated islands
that reduce flow velocity and allow for warming (Moatar and
Gailhard 2006).

Intensive agriculture (70% of land cover) and human devel-
opment (40% of the watershed population) in the middle
Loire River likely led to dramatic nutrient enrichment, which
was particularly evident starting in the early 1980s, and lasted
for approximately 25 yr (Moatar and Meybeck 2005). During
this time, the Loire River also experienced trends of rising
water temperature, reduced flow (Moatar and Gailhard 2006),
rapid expansion of invasive Corbicula fluminea filter feeders
(Floury et al. 2013). Then, in the past 15 yr, the river has
exhibited dramatic decreases in phosphorus (Minaudo
et al. 2015), suspended organic matter (Minaudo et al. 2016),
and planktonic biomass (Minaudo et al. 2020).

Data acquisition and processing
We obtained hourly DO and water temperature data

(Fig. S1) from 1993 to 2018 from a regulatory dataset
maintained and collected by �Electricité de France (EDF)
upstream of the Dampierre nuclear power plant (47.4�N;
2.3�E). Measurements are made on pumped water from the
middle of the river. While the data were quality-controlled for
sensor drift and outlier removal by the agency using methods
developed by Moatar et al. (2001), we conducted additional
control using low-pass data filtering and outlier removal based
on visual inspection.

We used Kalman interpolation (with R package imputeTS,
Moritz and Bartz-Beielstein 2017) to fill data gaps in DO and
water temperature time series where gaps were less than 1 d
(days with gaps were less than 1% of all data); gaps longer
than 1 d were assigned NA values and omitted from further
analysis. We estimated DO saturation concentration (i.e., DO
concentration at equilibrium with atmospheric oxygen) as a

function of water temperature (�C), and we estimated water
depth (m) from a depth-discharge rating curve established for
the study site. Short-wave radiation (W m�2) data were
obtained from a nearby meteorological station and converted
to photosynthetically active radiation (PAR, 400–700 nm,
μmol m�2 s�1). We gap-filled periods without measured PAR
using estimates based on latitude and longitude (Fig. S1).

Available long-term water quality characteristics included
water column concentrations of nitrate (NO3–N), phosphate
(PO4–P), biochemical oxygen demand (BOD5), dissolved
organic carbon (DOC), total suspended solids (TSS), and chlo-
rophyll a (http://www.naiades.eaufrance.fr/, Diamond 2021;
Table S1). Most were recorded at Jargeau (47.9�N; 2.1�E) on a
monthly basis from 1980 to 2018 by the Loire-Bretagne Basin
Water Agency. To increase sampling frequency and time series
length, we supplemented these data with measurements from
a station 20 km downstream at Orléans (47.9�N, 1.9�E), which
we justify given that water chemistry (particularly chlorophyll
a) was similar between the two stations on days with coinci-
dent measurements (e.g., β = 0.84, R2 = 0.74, p < 0.001 for
chlorophyll a).

We obtained summertime estimates (1997–2018) of macro-
phyte areal cover from the nearby St. Mesmin Nature Reserve
(47.87�N, 1.82�E), where species-level cover was measured at
24 transects (60 m long by 5 m wide) over a 7.5 km reach
(overall area sampled = 7200 m2). We calculated areal macro-
phyte cover percentages by dividing their measured area by
the total sampling area.

We also obtained summertime Corbicula fluminea densities
from EDF (1991–2018), which were quantified with the Surber
technique. We estimated clam filtration rates (m3 d�1) in the
river reach with literature values for individual clams (McDow-
ell and Byers 2019) scaled to measured densities (individuals
m�2) and estimated reach benthic area (250 m wide
� 10 000 m long). To quantify the relative importance of clam
filtration rates, we divided the hydraulic residence time of
water within the 10-km reach (reach volume/median daily
summer discharge, [d]) by the time needed for clams to filter
the water within the reach (reach volume/scaled filtration rate,
[d]) (McDowell and Byers 2019). This unitless “turnover ratio”
estimates the number of reach volumes filtered by clams at
baseflow; when clams filter as rapidly as discharge (i.e., ratio
values of 1) the clams filter all of the incoming water within
the reach.

For all analyses, we focus on the growing season (April–
October) for two reasons: (1) the time frame includes periods
of maximal biological activity; and (2) the growing season
minimizes confounding effects of predictable disturbance
events (e.g., floods, freezing) common in winter. As such,
summer includes biotically driven signal-to-noise ratios that
are greatest, providing the optimal conditions for testing
hypotheses presented here. Indeed, as our metabolic measure-
ments ultimately show, GPP is effectively nil (as are 40% of ER
estimates) outside of the growing season, limiting its
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inferential utility during that time, and justifying our empha-
sis on analyses of summer measurements only.

Metabolism calculations
We used a single-station open channel method to estimate

stream metabolism (Odum 1956). We estimated daily fluxes
for GPP (g O2 m�2 d�1), ER (g O2 m�2 d�1), and reaeration
(k600 [d�1]) using inverse fitting of DO dynamics with a state
space approach (i.e., including process and observation error)
and Bayesian inference with Markov chain Monte Carlo sam-
pling (Appling et al. 2018). To constrain k600, we pooled its
estimates based on discharge, corresponding to the
b_Kb_oipi_tr_plrckm.stan model in the streamMetabolizer R
package (version 0.10.9) (Appling et al. 2018). The hyperprior,
i.e., the prior distribution of the mean of k600 for all days, was
lognormally distributed—Lognormal(1.1, 0.1)—which was
based on O’Connor and Dobbins equations (O’Connor and
Dobbins 1958) and floating dome measurements (G. Abril,
unpublished, Table S2). Priors for daily GPP and ER were nor-
mally distributed—N(8, 6) and N(�7.1, 7.1), respectively—
where GPP was based on literature ranges from prior
unpublished investigations and ER was based on developer
recommendations. Four Markov chains were run in parallel on
four cores, with 1000 warmup steps and 500 saved steps on
each chain. Additional information on metabolism calcula-
tions is provided in the Supporting Information (Figs. S1–S3).

Regime shift and stable state detection
We first evaluated regime shifts in ecosystem state (i.e., TSS,

chlorophyll a, BOD5, PO4–P, NO3–N, Corbicula fluminea den-
sity, and macrophyte cover) and metabolism (i.e., GPP and
ER) with a statistical change point analysis, which identified
the point in each time series where the mean and variance
shifted. The presence of a change point indicates a likely
regime shift in the time series. Where change points are
detected at similar times (i.e., within estimated uncertainty
bounds) among different variable time series, we interpret the
implied regime shifts as coincident; coincidence among vari-
ables is one indicator that the detected change points are asso-
ciated with an ecosystem state shift.

Change points in our time series were detected using gener-
alized, hierarchical linear models with Bayesian inference (R
package mcp, Lindeløv 2020). We fit generalized linear models
to our time series and prescribed the inclusion of discrete
changes in mean and variance. We then provided uniformly
distributed priors of change points based on visually obvious
shifts in time series, but ensured they were 4 yr wide to mini-
mize confirmation bias (e.g., if the time series exhibit a clear
change point in July 2005, our prior distribution as uniform
between July 2003 and July 2007). We evaluated convergence
for the change point, and the means and variances before and
after the change point (nparam = 5) using the Gelman-Rubin R
diagnostic, ensuring its value was <1.01. The output includes a
best estimate of the change point and its 95% credible interval

(i.e., Bayesian equivalent to confidence intervals). We calcu-
lated growing season mean and variance before and after the
change point for each variable to compare the relative magni-
tude of change.

To assess the plausibility of stable, resilient alternative river-
ine stable states similar to those observed in shallow lakes, we
created phase space plots relating known drivers (PO4–P, Cor-
bicula fluminea density) and response variables (chlorophyll a
and TSS). We also did the same for metabolism (GPP vs. chlo-
rophyll a and PO4–P) to assess if metabolic regimes exhibited
stable regime behavior. Each phase space plot shows the inter-
annual trajectory of representative summer values for each
variable with presumed drivers on the x-axis and response var-
iables on the y-axis. Where a rapid shift between alternative
states (or metabolic regimes) occurs driven by strong internal
feedbacks, the phase-space plots exhibit an “S” shaped pattern
(e.g., Scheffer et al. 2001) where both low and high values of a
response variable are possible at the same value of the driver
variable. Strong clustering of points at either end of the “S”
curve indicate stable regions of the ecosystem state space. If
shifts are not regulated by internal feedbacks that confer sta-
bility, or these feedbacks are weak, these plots will exhibit
smooth, monotonic behavior; sudden transitions between
strongly contrasting phases indicate the presence of internal
feedbacks that lead to resilient ecosystem states.

Temporal shifts in ecosystem processes
We quantified four facets of ecosystem changes following

regime shifts in both ecosystem state variables and metabolic
function. First, we evaluated the changing abiotic controls on
GPP, following our prediction that the macrophyte state is less
sensitive to variation in light, temperature and discharge due
to more temporally stable biomass stocks. Second, we evalu-
ated changes in biological removal efficiencies for C and N,
following our prediction that these will decrease with a switch
to macrophyte dominance and the acquisition of nutrients
from the sediments. Third, we evaluated changes in reach-
scale C balance between GPP and ER following our prediction
of increased persistence of biomass stocks under macrophytes.
Finally, we evaluated the temporal coupling of GPP and ER
following our prediction that it would be reduced with more
stable biomass stocks under macrophyte-dominance.

Changing abiotic controls on GPP
Prior to evaluating how regime change altered abiotic con-

trol of GPP, we first determined the primary influences on
GPP broadly across the time series with multiple linear regres-
sion. To do this, we used a best subsets approach with an
exhaustive search algorithm (R package leaps, Lumley 2020) to
compare growing season GPP against hypothesized drivers
using measured physicochemical variables on days when all
variables were measured coincidentally (n = 181). We centered
and scaled variables so that model coefficient magnitudes
would be comparable. We considered daily discharge, median
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daily light, median daily water temperature, and grab samples
of DOC, TSS, NO3–N, PO4–P, and chlorophyll a as potential
drivers of GPP. After ensuring residuals were normally distrib-
uted and homoscedastic, we compared models with adjusted
R2, Mallow’s Cp statistic, BIC, and the PRESS statistic.

To specifically evaluate changing strength in environmen-
tal drivers of GPP under changing regimes in the Loire River,
we conducted a multiple linear regression. We used the domi-
nant environmental drivers identified by previous regression
analysis as our predictor variables with regime as an interac-
tion term. Metabolism measurements prior to the change
point were considered indicative of the phytoplankton meta-
bolic regime, and measurements after the change point were
indicative of the macrophyte metabolic regime. Prior to our
analysis, we centered and scaled the data so that coefficients
between would be comparable. To avoid residual autocorrela-
tion, we randomly sampled the dataset to yield 200 points in
each regime. Where the interaction term was significant, indi-
cating change in the nature of control, we further compared
the magnitude of regression coefficients for the environmental
drivers within each regime type to assess their changing
strength between regimes.

Changing biological removal efficiencies
We quantified reach-scale nutrient removal efficiency using

the Damköhler number (Da), a unitless ratio relating reactivity
to transport (Da = removal rate / transport rate). Da values
below one indicate that transport through the system domi-
nates and removal is rate-limited (e.g., by biotic assimilation
capacity), whereas Da values greater than one indicate that
reactivity in the system dominates and removal is supply-lim-
ited. We calculated Da for both C and N as the ratio of biologi-
cal removal (in g month�1) to the river loading (g month�1),
where removal and loading were obtained from monthly aver-
age values for August. We chose August because it is the most
stable baseflow month (99 � 56 m3 s�1; mean � SD), allowing
for (1) consistent hydraulic travel times across years and there-
fore comparable reach lengths and benthic surfaces to scale
areal removal rates, and (2) ideal conditions to isolate effects
of biotic element removal.

We postulated that reach-scale mass removal for C was
defined by ER, and for N was equal to autotrophic NO3–N
uptake (g NO3–N m�2 month�1). For both C and N biological
load removal, we scaled areal fluxes (g m�2 month�1) to the
reach area, with the length estimated as the distance water
travels over 1 d (�10 km in summer baseflow) and width
based on average width over this travel distance (�250 m). We
estimated autotrophic nitrate uptake from GPP (Heffernan
and Cohen 2010) in C units and an assumed C:N stoichiome-
try for phytoplankton (8:1) and macrophytes (20:1) (Ventura
et al. 2008). We made the simplifying assumption, based on
clear evidence of ecosystem state shift from phytoplankton to
macrophytes that all autotrophic nitrate uptake was attributed

to phytoplankton prior to the state shift and was attributed to
macrophytes after the state shift.

River loads were calculated by multiplying measured con-
centration and discharge. For C, we used total organic carbon
(TOC) concentration (g m�3) as the constituent of interest
because it describes the potential organic matter pool for respi-
ration. TOC was the sum of DOC and particulate organic car-
bon (POC), where POC was estimated from total pigments
(chlorophyll a and pheophytin) using literature conversion
values derived for this river (Minaudo et al. 2016). For N, we
used total inorganic nitrogen (TIN) concentration as the con-
stituent of interest because it describes the overall pool avail-
able to autotrophic assimilation. We calculated TIN as the
sum of NO3–N and ammonium ion concentrations (nitrite is
less than detection for most sampling dates).

Decreased NEP and C balance
To determine the shifting balance between GPP and ER

associated with state and metabolic regime shifts we evaluated
the sign and magnitude of NEP integrated over the growing
season for a representative river reach. Positive NEP implies
net organic C accrual within the river reach (“net autotro-
phy”), while negative NEP implies net CO2 efflux out of the
river reach (“net heterotrophy”). A shift from autotrophy to
heterotrophy constitutes a meaningful change in biological
processing of C in the river. To emphasize the NEP effect on
the C balance, we estimated longitudinal C efflux or accrual
(Mg C km�1) from the river reach by first converting daily
NEP rates in units of g O2 m�2 d�1 to commensurate C units,
assuming molar respiratory and photosynthetic quotients of 1
(King et al. 2014). We then scaled average daily growing sea-
son value of NEP (g C m�2 d�1) to the mean reach width
(250 m) and the growing season length (180 d). This approach
assumes rapid exchange of respired CO2 with the atmosphere,
and negligible transformation to other aqueous inorganic
forms (e.g., bicarbonate) with downstream transport out of
the reach.

Decoupling of temporal variation in GPP and ER
We quantified the coupling between GPP and ER using

Granger causality, an approach broadly useful for detecting
interactions between strongly coupled, or synchronized, vari-
ables in nonlinear systems (Sugihara et al. 2012). While river
and stream GPP and ER are typically highly correlated on daily
timescales, these correlations are not necessarily or entirely
causal because GPP and ER have shared exogenous drivers (e.
g., temperature). Granger causality was applied in an effort to
parse the effect of GPP on ER—i.e., the effect of C fixed by
photosynthesis in a given day on community respiration on
that same day, or the day after. Granger causality tests
whether past values (limited to a lag of 1 d in this case) of GPP
are useful for predicting ER once the ER time series has been
modeled with a vector autoregressive model. The null hypoth-
esis, tested with a Wald test, is that past values of GPP do not
predict ER values. That is, GPP and ER are temporally
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decoupled. We grouped each metabolic time series by year
and conducted the test for each year. We extracted Wald test
p-values for each year, and interpret p-values >0.05, indicating
a failure to reject the null hypothesis, implying that GPP and
ER are poorly coupled. By complement, Wald test p < 0.05
imply significant coupling.

Early warning indicators of regime shifts
For each of the metabolic and state variable time series, we

calculated right-aligned moving window estimates (“early
warning indicators”) of variance, skewness, and lag-1 autocor-
relation coefficient (ar[1]) at each date. The temporal resolu-
tion was monthly for grab sample data, and daily for GPP, ER,
NEP, and the minimum, maximum, and diel ranges for DO
concentration. In this procedure, there are (at least) two criti-
cal choices that affect the subsequent output interpretation:
window length and detrending procedure. Hence, we con-
ducted a series of sensitivity analyses to identify an optimal
window length for each time series, as is commonly rec-
ommended (Dakos et al. 2012). The goal of these sensitivity
analyses is to balance estimate precision, which increases with
larger window sizes, with the ability to capture dynamics in
the time series, which improves with smaller window sizes
(Carpenter et al. 2011). We varied the length of our moving
window estimates from between 5% and 50% of each time
series length to evaluate the influence of window size on
results (Dakos et al. 2012). We further tested the sensitivity of
the early warning indicators to two commonly applied
detrending procedures: Gaussian detrending to remove sea-
sonality, and first differencing (Dakos et al. 2012).

We quantified the temporal evolution of the various early
warning indicators with the nonparametric Mann–Kendall
trend test, which tests for monotonic trends leading up to a
change point based on the Kendall τ rank correlation coeffi-
cient (Scheffer et al. 2015). A high Kendall τ prior to a regime
shift indicates that a given variable functions well as an early
warning indicator. For example, a high Kendall τ could arise
from the standard deviation of chlorophyll a increasing con-
sistently leading up to the regime shift (as predicted by theory,
Carpenter and Brock 2006) suggesting it serves as a viable indi-
cator for anticipating the regime shift. We assumed a Kendall
τ magnitude of 0.5 (cf. Dakos et al. 2012) to be a cut-off value
to identify a variable as significant early warning indicator.

A simple re-oligotrophication model
We developed a simple model of the re-oligotrophication

process with the purpose of first demonstrating how GPP and
ER decoupling occurs—and NEP changes sign—as the biomass
storage properties of the ecosystem change. The model served
a second purpose in assessing how this decoupling may
induce early warning signals in the NEP time series signal. The
model represents the links between biomass structure (i.e.,
planktonic or sessile) and biomass export (Fig. S4). Biomass,
the only state in the model, is driven by five fluxes: inputs of

(1) GPP and (2) allochthonous upstream imports, and outputs
of (3) autotrophic respiration (AR), (4) heterotrophic respira-
tion (HR), and (5) downstream export, or biomass flushing
(Fig. S4). While the model employs six parameters that control
these fluxes, the only free parameter that we considered was
the export rate, corresponding to the proportion of biomass
exported with flow. Values for other parameters were based on
estimates for the middle Loire River, where AR was assumed to
be 50% of GPP and HR was assumed to be 20% of biomass.
Here, the essence of the putative regime shift is proposed to
be captured in the differing propensity for export under the
alternative stable states. Accordingly, model output should
provide similar early warning behavior as observed empirically
for proposed indicators.

We ran the model for 25 yr on a daily time step (to mirror
our metabolism time series), allowing the daily export rate to
slowly decline from a uniform distribution from 0.1 to 0.9
(unif[0.1, 0.9]), representing a phytoplankton environment
where 10%–90% of biomass can be exported on a given day,
to unif(0.1, 0.2), representing a macrophyte environment
where only 10%–20% of biomass can be exported on a given
day. While a more complex model that considered actual dis-
charge variation is more realistic, we selected this simple
model because it generated similar results.

We compared the model output dynamics to observed time
series patterns (i.e., ar[1], standard deviation, and skewness) of
the state variables considered for early warning indicators.
Specifically, using the same decision criteria for analyzing the
model time series (rolling window size, detrending) we investi-
gated whether the model replicated the time series patterns
observed in the empirical data spanning the regime shift from
phytoplankton- to macrophyte-dominance.

Results
Evidence of stable regime shifts in ecosystem state, but not
process

The middle reach of the Loire River exhibited a dramatic
and approximately synchronous change point in nearly all
river ecosystem state variables—including TSS, PO4–P, BOD5,
and NO3–N—between 2002 and 2003, with a commensurate
shift in water column concentrations of chlorophyll a approx-
imately 3 yr later (2005; Fig. 1a–e). These shifts were large
(changes of �75% TSS, �75% PO4–P, �60% BOD5, �90%
chlorophyll a; and +25% NO3–N, Fig. 1a–e, right panels) and
sudden, occurring within a narrow credible time span, espe-
cially for N, P and chlorophyll a. Notably, while PO4–P con-
centrations had been declining slowly since the early 1990s
(Fig. S5), the shift between 2002 and 2003 was far larger, and
inverted the seasonal patterning to yield low summer concen-
trations. The TSS change point exhibited the widest credible
intervals (approximately 7 yr), followed by BOD5 (approxi-
mately 3 yr), whereas other state variables’ uncertainties were
constrained to approximately 1 yr. Submerged macrophyte
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communities expanded rapidly and coincidentally with water
chemistry changes, exhibiting a detectable change point by
2009 (Fig. 1g). Estimated change points were robust to our
priors and also to the inclusion or exclusion of variance in the
model prescription.

These dramatic state variable shifts occurred contempora-
neously with colonization of the middle Loire River by the
invasive Corbicula fluminea clam (Fig. 1f). We detected a
change point early in the time series of Corbicula fluminea den-
sities in 2001, and by 2003 clam densities were sufficient to fil-
ter approximately 10% of the middle Loire River volume each
day (i.e., turnover ratio = 0.1); by 2012 this had risen to
approximately 100% (Fig. 1f, right panel values indicate the
turnover ratio). State changes in summer PO4–P, TSS, and
chlorophyll a concentrations were approximately coincident
with the initial increase in clam density (Fig. 1a–e), even
though the filtration efficiency at the time of the state change
remained relatively low.

Change points for GPP and ER were coincident in 2014,
but clearly lagged the state variables by a decade or more, and
credible intervals for metabolic change points were much
smaller than for state variables. Changes in metabolic flux
magnitudes before and after the change point were minor in
comparison to state variables, with declines in mean daily
GPP by only 25% and ER by 14%, respectively. The GPP
decline was smaller still (near 10%) when indexed by summer
low-flow duration, a strong indicator of metabolic pattern and
magnitude (Fig. S6).

Phase space plots of the driver and response state variables
(Fig. 2) further illustrate the rapidity of the ecosystem state
shift, and stability of the pre- and postshift states. In particu-
lar, the clear bimodal clustering to the PO4–P vs. chlorophyll
(Fig. 2a) and PO4–P vs. TSS (Fig. 2b) relationships are similar
to the dynamics in shallow lakes exhibiting alternative stable
states between algal dominance and macrophyte dominance
(Scheffer et al. 2001). This clustering, especially for the rela-
tionship between PO4-P and chlorophyll a, implies that both
variables shifted around the same time. This limited evidence
of hysteresis suggests that while the two states (phytoplankton
and macrophyte dominance) are distinct and durable, the
region of bistability (i.e., where both states are stable at the
same levels of P loading) is narrow. Furthermore, the observed
patterns between Corbicula and chlorophyll a (Fig. 2c) or PO4–

P (Fig. 2d) suggest a surprisingly monotonic transition. We
also note the absence of any clear change in mean summer
GPP (Fig. 2e–f), despite marked changes in both PO4-P and

chlorophyll a. This is consistent with our analyses in Fig. 1,
suggesting modest changes in the metabolic regime that sub-
stantially lag the ecosystem state shift.

Shifts in ecosystem processes accompany a shifting
metabolic regime
Abiotic controls on GPP weaken under macrophyte
dominance

A best subsets multiple regression model explained �70%
of the variation in daily GPP (F6,181 = 68.14, p < 0.001). Dis-
charge and median daily open sky irradiance were retained in
every iteration of the exhaustive selection algorithm,
suggesting their consistent role as dominant environmental
drivers. In the final six-variable model, temperature, chloro-
phyll a, median daily open sky irradiance, discharge, TSS and
DOC were all retained, but nutrient concentrations were not
(Table S3). Temperature and chlorophyll a had the largest
overall effect on GPP, whereas irradiance had an effect approx-
imately half as large; all three effects were positive. Discharge
had the greatest negative scaled model coefficient, followed by
TSS, DOC, likely indicating their important role for water col-
umn light attenuation.

Due to the consistent dominant effects of light and dis-
charge on GPP from the previous best subsets regression, we
focused on how these abiotic controls changed from the
plankton to macrophyte metabolic regimes. Overall scaled
model coefficients suggest comparable, but opposing influence
of discharge (β = �2.81) and light (β = 2.00) on growing sea-
son GPP (F5;394 = 42.12, Radj

2 = 0.34, p < 0.001; Table S4).
From the phytoplankton-dominated to macrophyte-domi-
nated regimes, the negative influence of increasing discharge
and the positive effects of increasing PAR declined by 50%
(from �2.81 to �1.62) and 43% (from 2.00 to 0.99), respec-
tively (Fig. 3a and Table S4).

Divergence of biological removal efficiencies for C and N
Removal efficiency for C increased with macrophtye domi-

nance, but decreased for N (Fig. 3b). Over the 25-yr period,
the log-linear rate of Da change for C was 0.03 yr�1

(R2 = 0.16, p = 0.04), and for N was �0.17 yr�1 (R2 = 0.53,
p < 0.001; although the rate up to the 2005 state variable
change point was 50% greater = 0.24 yr�1). We note that if
the entire summer period was analyzed, as opposed to only
focusing on August, these log-linear rates are similar
(C = 0.03 yr�1, R2 = 0.41, p < 0.001; N = �0.10 yr�1,
R2 = 0.46, p < .001), confirming that the approach holds

Fig 1. Change points in ecosystem state and metabolism. Time series of ecosystem state variables (left panels)—including (a–d) water chemistry, (e)
water column chlorophyll a concentrations, (f) Corbicula fluminea and (g) macrophyte density—as well as (h) open-channel metabolism (GPP and ER) in
the middle Loire River for 1993–2018. Estimated change points (dashed lines) with 95% credible interval (shaded rectangles; credible intervals for metab-
olism are too narrow to see) are shown for each variable with text displaying the year of the change point. Dark line segments indicate growing season
(April–October) observations while light segments are dormant season observations. Panels at right contrast the mean and 95% confidence intervals
(mean � SD in text) of each variable before (1) and after (2) the change point for that variable. Dotted line in panel (f) indicates a turnover ratio of 1
(turnover ratio values on right panel) for Corbicula fluminea; note log scale.
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despite some uncertainty about variable benthic area due to
variable discharge. Because the magnitude of ER was largely
unchanged during this period, reduced particulate C flux due
to declining phytoplankton concentrations in the river reach
explains the 105% � 12% increase in C removal efficiency
under macrophyte dominance (from Da = 0.11 � 0.03 to
0.22 � 0.12; Fig. 3b). In contrast, NO3–N biotic uptake effi-
ciency decreased approximately 95% � 24% (from
Da = 1.50 � 0.24 to 0.07 � 0.06; Fig. 3b) due to both a combi-
nation of higher C:N ratios for primary producers lowering N
demand and increased TIN concentrations (Fig. 1d). Notably,
changes in C and N processing were not linear, with some evi-
dence for regime shift behavior.

Shift from net autotrophy to net heterotrophy under
macrophyte dominance

Summer NEP shifted from positive (autotrophic) to nega-
tive (heterotrophic) after the shift to macrophyte dominance,
with concomitant shifts from longitudinal net C accrual

(25 Mg C km�1) to net C evasion (�25 Mg C km�1; Fig. 3c).
The NEP change point from autotrophy to heterotrophy
aligns with the estimated change points for GPP and ER (blue
vertical bars in Fig. 3), suggesting a relatively rapid, but del-
ayed shift relative to ecosystem state changes.

Temporal decoupling of GPP and ER under macrophyte
dominance

Up to the change point detected for ecosystem metabolism
in 2014, p-values for Wald tests of Granger causality between
GPP and ER were less than 0.05, indicating tight temporal
coupling (Fig. 3d). This held for the entire prechange point
time series except 2007, which was an unusually wet summer
(Fig. S1). However, near the metabolic regime change point,
and certainly after it, p-values were consistently greater than
0.05, indicating failure to reject the Granger causality null
hypothesis, and implying temporal decoupling between GPP
and ER at short time scales (<2 d).
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Fig 2. Phase space plots for middle Loire River variables. (a–d) Plots for predicted drivers (PO4–P, Corbicula fluminea density) vs. response variables (chlo-
rophyll a and TSS) colored by year with standard error bars and point type indicating presence of macrophytes; note log scales. The chlorophyll a- PO4–P
and the TSS- PO4–P indicates two clusters of points, 1980–2004 (dark blue region) and 2005–2018 (green yellow region), suggesting two alternative
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Plots for predicted drivers of GPP, with no indication of alternative stable metabolic regimes.
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Ecosystem state regime shift predicted by early warning
indicators for NEP

Typical state variable early warning indicators such as autocor-
relation (i.e., ar[1], standard deviation, and skewness) did not
unambiguously change in the years leading up to the detected
ecosystem state shifts in 2002–2005 (Fig. S7), and the resulting
Kendall τ values that indicate the robustness of early warning
detection were highly variable and generally below the 0.5 thresh-
old adopted to select viable indicators (Fig. S8). Moreover, indica-
tors derived from these state variables time series were strikingly
sensitive to rolling window size (2.5–12.5 yr) and detrending
method (i.e., Gaussian, first differencing), limiting their utility in
any forward-looking applications (Figs. S7, S8). While unstable
early warning indication may be due to low observation fre-
quency or strong dependence on discharge, we note that early
warning indicators using hourly DO time series (i.e., DO daily
maxima, minima, amplitude) were similarly sensitive to analysis
decisions, lowering our confidence in their utility (Figs. S9, S10).

In contrast, time series statistics of NEP (ar[1], standard devi-
ation, and skewness) were surprisingly informative for early
warning detection of both the state shift and the metabolic

regime shift (Fig. 4). These results were robust to detrending,
likely because NEP in the Loire River has the desirable time
series properties of stationarity (tADF = �12, p < 0.01) and nor-
mally distributed observations. Sensitivity analyses (Fig. S12)
identified an optimal moving window length of 4 yr (16% of
the dataset for metabolism fluxes). This window size provided
the clearest signals, while still preserving a large amount of the
pre- and postchange point dataset for analysis. We note that
overall results for NEP were robust to smaller window sizes,
down to 10% of each dataset. We observed increases in NEP
standard deviation (Kendall τ = 0.56) and ar(1) (Kendall
τ = 0.6) leading up to the state shift (Fig. 4b,c). The magnitude
of skewness peaked in 2001 (Fig. 4d). NEP standard deviation,
skewness, and ar(1) also increased prior to the metabolic
change point in 2014 yielding what appears to be robust early
warning for this functional shift.

Model concordance with NEP early warning indicators
Given the potential for NEP to provide reliable early warn-

ing indication of the state transition, we focused our model
comparison on the time series patterns for NEP (Fig. 4e). For
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the three early warning indicators we considered, there was
strong correspondence between the empirical and modeled
patterns. Although the absolute values differ significantly,
early warning indicator trends in modeled ar(1) (Fig. 4f), stan-
dard deviation (Fig. 4g), and skewness (Fig. 4h) align with
measured patterns, most strongly for ar(1), which increases as
the state transition approaches. In contrast, standard devia-
tion declined throughout the model run, analogous to mea-
surements between state and metabolic regime change points.
Skewness exhibited similar increasing behavior jump (near
year 16) relative to measured values (near year 2001), despite
not temporally aligning.

Discussion
The metabolic regime shift is damped and lagged
compared to the ecosystem state shift

The temporal synchrony of change points among key vari-
ables provides strong support for an ecosystem state shift in

the middle Loire River (Minaudo et al. 2015, 2020). Based on
state variables, our observations situate the discrete shift in
autotroph community from a water column, planktonic state
to a sessile, benthic one around 2005. Macrophytes and asso-
ciated epiphytic taxa ultimately replaced phytoplankton as
dominant primary producers in the river. The predominance
of submerged macrophytes (as opposed to floating or emer-
gent taxa) aligns with expectations for re-oligotrophication
(Hilton et al. 2006), with at least one pervasive species
(Myriophyllum spicatum) known to exhibit phytoplankton alle-
lopathy (Švanys et al. 2014).

Dramatic reductions in chlorophyll a and TSS are consis-
tent with shifts reported elsewhere with advancing Corbicula
fluminea invasions (Cohen et al. 1984; Pigneur et al. 2014),
suggesting that these filter feeders are likely complicit with the
sudden changes observed in the Loire (Minaudo et al. 2015).
We note, however, phase space plots of chlorophyll a vs. PO4–

P imply a state shift more convincingly driven by internal
nutrient or turbidity feedbacks than clam filtration (Fig. 2).
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Our estimates of small turnover ratios (� 0.1; Fig. 1f) and
detailed modeling of clam filtration rates (Descy et al. 2012)
further challenge the singular role of top-down control of the
state transition by Corbicula fluminea, showing that densities
(ca. 50 ind m�2) at the time of the change points (2002–2005)
were too low to drive the decline in phytoplankton biomass.
Hence, while clam filtering is an important aspect of ecosys-
tem change, it cannot, by itself, explain the rapid regime shift.
We conclude that the state shift in the Loire River was likely
induced via both bottom up (nutrient) and top down (clam)
controls. Regardless of the relative importance of these con-
trols, the change that was observed was rapid, coherent across
variables, and durable in time.

Contrary to our expectations, the metabolic regime shift in
the Middle Loire was not coincident with the observed shift
associated with state transition from phytoplankton to macro-
phyte dominance. Moreover, the observed change in meta-
bolic rates was small in comparison to the magnitude of state
change and lagged the change points in chlorophyll a and
PO4–P by a decade (Fig. 1h). This suggests that decline in
mean daily GPP (�25%) and ER (�14%) was decoupled in
time and magnitude from regime shifts in the primary auto-
trophs (Fig. 1). These findings align with similar results from
lake ecosystems (Zimmer et al. 2016)—perhaps due to rela-
tively long hydraulic residence times in the middle Loire River
that allow for internal feedbacks analogous to those from such
shallow lake systems to develop. While shallow lake ecosys-
tems have hydraulic residence times orders of magnitude
greater than the middle Loire (e.g., 1 yr compared to 1 d),
their magnitudes of C turnover times are often matched (e.g.,
1 yr, Zimmer et al. 2016). We also observe a matching of
hydraulic and C residence times (TOC:ER) in the middle Loire
(�0.3 d), potentially suggesting that when these align, inter-
nal, biotically driven feedbacks can form and persist.

Critically, however, ecosystem state variables did exhibit a
substantial threshold response, with clear indication of a
regime shift to a new state (Fig. 2; Scheffer et al. 2001). The
presence of a change point in the metabolism time series
(Fig. 1h) along with the absence of evidence for alternative
metabolic regimes (Fig. 2e–f) supports the idea that ecosystem
function responses may be more gradual than (or even
decoupled from) state responses to changing magnitudes of
environmental drivers (Capon et al. 2015; Hillebrand
et al. 2020). The maintenance of whole-system productivity
despite order-of-magnitude declines in water column PO4–P,
TSS, and chlorophyll a, supports the general principle that
energy inputs and disturbance, not nutrient concentrations,
control river GPP (Jarvie et al. 2013; Bernhardt et al. 2018),
consistent with revised models of river eutrophication (Hilton
et al. 2006; O’Hare et al. 2018).

The decade lag between the shift in dominant autotrophs
and the more modest metabolic regime shift could have sev-
eral explanations. First, the timing of the shift to a macro-
phyte state may have been spatially heterogeneous in the

study reach; our observations of macrophyte density are
highly localized and at the lower end of the reach, which may
reflect early changes in reach-scale shifts. Spatial patterns of
macrophyte advancement, detectable from satellite imagery or
detailed river surveys, may yield further insights into the
potential patchiness of state transitions (Dakos et al. 2011).
Second, P limitation to macrophyte GPP may lag their initial
growth as they deplete the standing stock of sediment P on
which they depend to overcome the declining upstream sup-
ply. Third, epiphyte density, which was not measured, but
likely exerts nutrient and light control on macrophyte growth,
may have increased over time, gradually reducing macrophyte
GPP. Finally, the decline in GPP around 2015 (Fig. 1h) may
arise from reduced summer flood incidence (Fig. S1a), allowing
emergent (as opposed to submerged) macrophyte biomass to
increase. This would lead to the underestimation of total river
GPP as emergent plants exchange DO directly with the atmo-
sphere, potentially creating an artificial change point due to
underrepresented GPP fluxes.

Features of the metabolic regime shift
We observed clear evidence of altered biogeochemical

processing related to shifts in ecosystem state and metabolic
regime (Fig. 3). First, GPP became less sensitive to variability
in the dominant environmental controls of light and dis-
charge under macrophyte dominance (Fig. 3a). We attribute
this weakened response to analogous shallow lake behavior
wherein phytoplankton respond strongly to incident light due
to rapid water column attenuation from self-shading, while
clear water and phototropism under macrophyte dominance
reduces this effect (de Tezanos Pinto and O’Farrell 2014).

Our observations support a substantial change in the rela-
tive processing efficiency of C and N in the river reach
(Fig. 3b). The significant increase in removal efficiency for C
(Fig. 3b) is almost entirely due to the reduced POC load
(Minaudo et al. 2016) under clear water, macrophyte-domi-
nated conditions. Indeed, the decrease in ER, which alone
would reduce processing efficiency, highlights the overriding
role of POC in raising reach-scale C removal efficiency. In con-
trast, the relative processing efficiency for N decreased mark-
edly, and the reach shifted from a reaction- to a transport-
dominated system (Fig. 3b). We attribute this to two primary
factors: (1) higher C:N tissue stoichiometry in macrophytes
compared to phytoplankton (Dickman et al. 2006; Xing
et al. 2013), and (2) to increased N excretion from Corbicula
fluminea clams (Lauritsen and Mozley 1989). Indeed, the onset
of elevated summer NO3–N concentrations (Figs. 1d, S4) under
macrophyte dominance is plausibly attributed in part to
decrease in NO3–N uptake efficiency, noting that TN concen-
trations remained relatively constant (Fig. S13). These contra-
sting patterns for C and N removal efficiency lead to a
generalized conceptual model for lotic re-oligotrophication
driven by a shift in autotrophic community (Fig. 5).
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Given persistent but unequal changes in ER and GPP with
the transition to macrophyte dominance, NEP shifted from
positive to negative in the middle Loire River (Figs. 3b, 5). This
contrasts strikingly with the observed increase in riverine NEP
during re-oligotrophication following improved wastewater
treatment in the Oria River, Spain (Arroita et al. 2019). This is
likely due to differences in how metabolism shifted between
the two systems, with improved wastewater treatment primar-
ily reducing ER (via effects on BOD5) in the Oria River contra-
sted with principally autotrophic community shifts in the
Loire that primarily impact GPP. It follows that each re-oli-
gotrophication process likely depends on the primary mecha-
nisms of change, and any generality across rivers will require
conditioning our expectations based on primary modes of eco-
system change.

Finally, the Granger causality analysis supported our pre-
diction of declining temporal coupling between GPP and ER
in phytoplankton vs. macrophyte states (Figs. 3d, 5). Because
ER includes AR, GPP implicitly influences that day’s ER (Hall
and Beaulieu 2013; Hotchkiss and Hall 2015). However, the
influence of GPP on HR (HR = ER – AR) depends on the mag-
nitude of allochthonous inputs, as well as quantity, quality
and distribution of internal organic matter stocks (del Giorgio
and Williams 2005). Allochthonous inputs typically dominate
in small streams (Vannote et al. 1980), where GPP < < ER due
to shading, and in streams with large exogenous loads (e.g.,
wastewater loads as in Arroita et al. (2019)). In larger rivers,
autochthonous sources often dominate, but vary with contra-
sting autotroph communities. When phytoplankton dominate
biomass production, net primary production (NPP = GPP – AR)
is highly bioavailable and rapidly consumed by heterotrophic
components of seston (Lair and Reyes-Marchant 1997; Hall and
Beaulieu 2013), coupling HR to GPP over short time scales
(Fig. 5a). Perhaps more importantly, plankton biomass is

subject to downstream transport (i.e., “flushing”), especially
during storms (Vilmin et al. 2016), limiting storage and thus
reducing the capacity to sustain HR when GPP declines. In con-
trast, when rooted macrophytes are dominant, fixed C is less
susceptible to flushing in addition to being less bioavailable
(Fig. 5b). When biomass and organic matter can accumulate
(including heterotrophic biomass like Corbicula sp.), HR can be
sustained even as GPP varies in the short term, or declines over
longer periods. This incrementally decouples HR from GPP,
and this decouples ER (AR + HR) from GPP. Importantly, this
behavior appears to be reversed in lakes where coupling
between GPP and ER is higher in oligotrophic than eutrophic
lakes, and where C excess may evade immediate respiration,
leading to burial or export (Brothers et al. 2013).

Early warning indicators of the ecosystem state shift and
metabolic regime shift

Early warning indicators of ecosystem regime shifts (Car-
penter et al. 2011) derived from state variable time series in
the middle Loire River were generally inconsistent with theo-
retical (Dakos et al. 2012) and experimental expectations
(Scheffer et al. 2015). Moreover, these indicators based on
state variable time series were highly sensitive to arbitrary
choices for rolling window size or detrending method (e.g.,
Gaussian, first differencing), limiting their utility in forward-
looking applications (Figs. S7, S8). While unstable early warn-
ing indication may be due to low observation frequency or
strong dependence on discharge, we note that early warning
indicators using hourly DO time series (i.e., DO daily maxima,
minima, amplitude), which all yielded limited actionable
insights, were similarly sensitive to analysis decisions, lower-
ing our confidence in their utility (Figs. S9, S10).

In contrast, early warning indicators based on NEP were
robust and informative (Figs. 4a–d, S11–S12), supporting our

a b

Fig 5. Conceptual model of a lotic ecosystem regime shift. (a) in a phytoplankton-dominated state, reach-scale GPP exceeds ER because fixed organic
carbon (OC) in the water column is more easily flushed downstream; phosphorus (P[aq]) is rapidly cycled between phytoplankton biomass and the water
column; and high phytoplankton NO3

� uptake leads to most N being bound in organic matter (ON). (b) In a rooted macrophyte-dominated state, OC
production is primarily benthic, reducing downstream transport, and decreasing spatiotemporal coupling between GPP and ER; P associated with phyto-
plankton and water column heterotrophs is filtered by Corbicula and stored primarily in the benthos (P[s]), whereas reduced water column uptake of
NO3

� leads to increased downstream NO3
�
fluxes.
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hypothesis that the temporal dynamics of NEP yields a rich
reservoir of information about ecosystem state and metabolic
regime shifts. The indicators were well-behaved according to
theoretical predictions (Dakos et al. 2012; Gsell et al. 2016).
Specifically, magnitudes of ar(1), standard deviation, and
skewness (interpreted as the growing influence of an alterna-
tive stable equilibrium near a tipping point; Guttal and
Jayaprakash 2008) of NEP increased relatively monotonically
up to the state shift. While the generality of using NEP as an
early warning indicator for river state shifts is unclear, it is
apparent that state shifts in lakes do not yield the same NEP
patterns (Batt et al. 2013). Still, we note that both temporal
and spatial uncertainties in metabolism estimates are lower in
rivers due to advection and turbulent mixing. We posit that
when metabolic estimates are reasonably well constrained, as
they are in long riverine time series like this one on the Loire
River, NEP yields a useful, integrative, and predictive measure
of ecosystem state and function, similar to patterns predicted
between forest productivity and ecosystem regime shifts (Bou-
lton et al. 2013). With the emergence of long time DO series
in many rivers (Appling et al. 2018), the utility and generality
of NEP shifts as metrics or even forecasts of ecosystem change
will be increasingly testable.

Contrasting patterns of net ecosystem productivity
between lotic system states

Decoupling between GPP and ER is difficult to discern from
their correlation alone (Sugihara et al. 2012), but is readily
detected from the time series properties of their sum (NEP).
While individual time series of GPP and ER are inherently
autocorrelated because of the temporal dynamics of their
shared drivers (i.e., solar radiation and temperature) and bio-
mass dependence, the degree to which they exhibit the same
autocorrelation depends on their temporal coupling, with
stronger coupling yielding more similar autocorrelation struc-
tures. NEP is the sum of two signals, so its autocorrelation
(RNEP,NEP) is mathematically defined as:

RNEP,NEP ¼ RGPP,GPPþRER,ERð Þþ RGPP,ERþRER,GPPð Þ

where Rx,y is the correlation matrix of vectors x and y. Because

ER and GPP have opposite signs, their cross correlations (right

hand parentheses) are negative. As the processes decouple, their

cross-correlation declines, and NEP autocorrelation increases,

yielding an integrative measure of the underlying structure of river-

ine metabolic regimes. This axiomatic result is also intuitive. Stron-

ger ecosystem memory in the form of stored biomass should

increase NEP stability. Our simple river reach growth model, with

a single free parameter to describe biomass flushing yields the same

conclusion (Fig. 4e–h). That model recreates the metabolic dynam-

ics of the shift from phytoplankton to macrophytes, including

gradual NEP declines, and shifting autocorrelation and skewness

patterns that provide early indication of ecosystem state changes.

Implications for lotic system management
An abrupt and durable state shift in this large, low-gradient

river implies plausible evidence of internal feedbacks that were
previously thought to be minimal in lotic ecosystems (Hilton
et al. 2006; Hilt 2015), with important implications for man-
agement. We note that these feedbacks do appear to be weaker
than in lentic systems, as indicated by the short lag between
changes in top-down (Corbicula fluminea) or bottom-up (PO4–

P) controls and the shift from phytoplankton to macrophytes,
which may also suggest socially palatable recovery timeframes.
The surprisingly weak coupling between ecosystem state and
metabolic rates, often attributed to community compensation
(Vis et al. 2007; Zimmer et al. 2016), further implies that
metabolism per se may not always be useful for evaluating
river ecosystem recovery (sensu Palmer and Ruhi 2019), espe-
cially when reduction in phytoplankton blooms is the target.
Perhaps in shallow lotic systems where nutrients are plentiful
from upstream resupply (Covino et al. 2018), ecosystem meta-
bolic rates organize to maximize power output (Odum and
Pinkerton 1955), and thus reflect light availability regardless
of community structure (Morgan Ernest and Brown 2001).
Critically, however, the temporal patterns and coupling of
GPP and ER signals do change, with dynamics that success-
fully predict both riverine state shifts and metabolic regime
shifts, and which exert measurable impacts on biogeochemical
processing efficiency.

State changes are important management considerations
for rivers worldwide, highlighting the urgency of understand-
ing linked changes in the regulation and provisioning of key
river functions. With the joint challenges of changing human
management and changing climate, measurements that reveal
the timing and magnitude of ecosystem responses and provide
early warnings of riverine state shifts are of obvious utility.
We suggest that monitoring the metabolic regimes of rivers,
and specifically tracking NEP, may yield early warning indica-
tion of state shifts, and thus provide useful interim targets for
management toward river re-oligotrophication goals. While
the observation that autotrophic state and primary production
are surprisingly decoupled in the Loire River invites refine-
ments of eutrophication conceptual models in lotic vs. lentic
waters, the metabolic response is, nonetheless, highly infor-
mative about the dynamics of state shifts. Long time series of
river metabolism like those from the Loire River are invaluable
for probing this link between ecosystem state and function,
detecting their shifts, and documenting progress toward eco-
system restoration objectives.
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