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Abstract
Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate

ecosystem functions such as in-stream solute and sediment reactions. The synchronization of DO signals in and
across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited
empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites
spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light
(a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream
network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when
longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases
as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported
this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity.
A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO
synchrony patterns within- and across-networks support the current paradigm of discharge and light control on
stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for
scaling subdaily metabolism estimates to network and regional scales.

Synchrony of environmental variation is increasingly used
to understand how ecosystems (Larsen et al. 2021; Seybold
et al. 2021) and catchments (Abbott et al. 2018; Van Meter
et al. 2020) function. However, using observations of synchrony
to inform our understanding of ecosystem function remains a
challenge. In streams, the fundamental processes of primary pro-
ductivity and respiration (i.e., “ecosystem metabolism”) lead to
predictable daily rhythms of dissolved oxygen (DO). These
rhythms are regularly measured at reach scales to quantify

stream quality, energy and elemental budgets (Odum 1956;
Heffernan and Cohen 2010; Appling et al. 2018b), and are useful
indicators of many ecosystem processes (Diamond et al. 2021).
Hence, patterns of DO synchronization among reaches may
indicate temporal alignment of stream network processes, and
thus provide insight into whole network functions.

The inherent advective flow and hierarchical structure of
stream networks results in a gradient of physical conditions
that may predict the spatial scales of DO synchrony
(e.g., Vannote et al. 1980). Indeed, the upstream length over
which a DO signal is derived—the “integration length”—is a
function of stream physical attributes (depth, velocity, tem-
perature) that control both gas exchange and advective trans-
port (Chapra and Di Toro 1991; Hensley et al. 2018). At low
flow, longitudinal flow connectivity that transports signals
downstream is reduced, leading to reduction in integration
lengths (Ward et al. 2018). The resulting patchy network
structure can desynchronize DO signals as they are increas-
ingly driven by varying local reach conditions (Dodds
et al. 2018), stream intermittency (Sarremejane et al. 2022),
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and discontinuities in source-water mixing (Ward and
Stanford 1983). In contrast, higher flows increase integration
lengths and longitudinal connectivity, smoothing heterogene-
ity in underlying processes and synchronizing DO signals
along the network. Hence, DO synchrony among reaches may
indicate network longitudinal connectivity, even as metabo-
lism varies spatially in response to local drivers.

Regional phenomena like open-sky insolation and tempera-
ture can also synchronize network DO by imposing synchro-
nous patterns of metabolic drivers (i.e., energy availability;
Koenig 2002; Vogt et al. 2011). For example, a shared solar
energy signal may induce the same diel productivity timing
(and thus increase in diel DO) throughout a network, and
even across networks in the same region (and same time
zone). However, reach-scale properties can modify this shared
forcing, leading to local variation in subdaily timing and mag-
nitude of energy delivery to the stream ecosystem (Wu and
Loucks 1995; Poole 2002). Indeed, local light availability varies
with riparian shading (Mulholland et al. 2001; Savoy and Har-
vey 2021), topographic shading (Yard et al. 2005; Julian
et al. 2008), stream azimuth (Savoy and Harvey 2021), and
attenuation through the water column (Julian et al. 2008; Kirk
et al. 2021). Hence, network DO synchrony likely arises when
energy to drive productivity is uniformly delivered, and by
contrast, DO synchrony diminishes when energy availability
is local (Fig. 1).

It is important to note that DO signals can be synchronous
(i.e., temporally aligned), despite having large variability in
their daily amplitudes. There is therefore a key difference in
spatial patterns of DO variation that inform network meta-
bolic magnitude (Diamond et al. 2021 and references therein),
vs. patterns of DO synchrony that inform metabolic timing.
This notion of metabolic timing is a critical component
toward extending our understanding of “metabolic regimes”
from the reach scale (Bernhardt et al. 2018, 2022) to the
network (Koenig et al. 2019) and from the subdaily rhythms
of DO variation to patterns over decades.

In this study, we explored the seasonal patterns and drivers
of DO synchrony across stream networks to test the following
hypotheses. (1) Flow connectivity increases DO synchrony in
a river network (Fig. 1, x-axis) because signal advection and
mixing smooth heterogeneities in environmental drivers of
stream metabolism such as light. (2) Light synchrony
increases DO synchrony in a river network (Fig. 1, y-axis)
because productivity-induced DO signals at sites within a
catchment—or catchments within a region—are controlled by
the timing of light reaching the stream surface. We expected
light to be most spatially uniform during leaf-off periods (early
spring and fall). We thus predicted that DO synchrony would
decrease in summer when flow connectivity decreases and
riparian canopies increase spatial heterogeneity in the timing
of light delivery to the stream. To address this question and
hypotheses, we considered both synchrony across all sites,
regardless of stream network position or catchment

membership, as well as synchrony among flow-connected
sites (i.e., those where water from one site can flow to another;
Larsen et al. 2021). The synchrony of these contrasting stream
reach populations informs the relative importance of shared
regional drivers vs. local drivers on downstream DO signal
propagation.

Methods
Study area

We studied 42 stream sites ranging from Strahler order 1 to
5 within five agricultural headwater catchments in the Forez
region (� 2000 km2) of the Loire River, France from July 2019
to October 2020 (Fig. 2), with 4, 11, 16, 8, and 3 sites in orders
1–5, respectively. Granite and gneiss lithology at upper catch-
ment boundaries gradually gives way to thick alluvium with
clay and sand at catchment outlets in a flat basin known as
the Forez plain. Sites span an elevation gradient of 330–
627 m.a.s.l. (NGF IGN69 datum) and the regional topography
is characterized by rolling hills with successions of plateaus
separated by long, steep slopes. Climate is continental,

Fig. 1. Conceptual framework for dissolved oxygen (DO) synchrony
(i.e., phase alignment of diel DO variation) across a stream network in
response to temporal regimes of light and flow. Spatially homogenous
timing of light delivery and high flow connectivity (e.g., typical in early
spring in temperate catchments) are expected to increase DO synchrony
(light shading). In contrast, DO synchrony declines under more spatially
heterogeneous light regimes (e.g., riparian leaf-on) and/or when summer-
time stream intermittency reduces flow connectivity (dashed lines in
stream network). Sites (filled circles in the network) of the same color indi-
cate synchronous behavior and different colors indicate asynchronous
behavior.
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with mean annual rainfall of 800 mm, and mean annual
temperatures of 11�C (range during measurement period =

0.0–34.3�C). The area has been under continuous agricultural
activity over the last 2000 years (Georges et al. 2004) and
recent intensive agricultural practices have led to high nutri-
ent surpluses (e.g., 30 kg N ha�1 yr�1; 10 kg P ha�1 yr�1)
(Diamond et al. 2021; Moatar et al. 2021). Additional conse-
quences of this long agricultural history include dam, water
mill, and weir infrastructure throughout the river network
(Cubizolle et al. 2003, 2012; Georges et al. 2004), particularly
in the Coise catchment.

Data collection and processing
We monitored all sites (Fig. 2) for DO (mg L�1) and stream

temperature (�C) between July 2019 and October 2020,
but not during winter (November–February). In 2020, we
began data collection on 3 March for sites in the eastern
catchments (Fig. 2c–e), and on 7 June for sites in the western
catchments that were largely comprised of Strahler orders
4 and 5 (Fig. 2a,b). At each site, DO and stream temperature
were measured every 15 min with an in situ sensor (HOBO
U26-001; Onset Computer Corporation, MA) instrumented
with a copper anti-biofouling guard. We cleaned DO sensors
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Fig. 2. Map of the 42 stream sites measured for DO and water temperature. Sites spanned five catchments in the headwaters (large inset) of the Loire
River, France (small inset; Loire River basin in light blue). Corinne land cover classes shown for each catchment. Stream sites symbols are shaded
according to the timing and length of the measurement period for DO. Discharge measurement sites are shown with blue triangles. Text indicates num-
ber of sites in each catchment (n), range of site catchment areas (a), total catchment stream length (L), and mean catchment stream density (Ld).
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every 2 weeks to remove biofouling. Prior to deployment,
we lab-calibrated DO sensors with both 100% water-saturated
air and with sodium sulfite for 0% saturation. We also mea-
sured DO and temperature with a calibrated handheld probe
(Pro Plus; YSI Inc., OH) at each field visit to check for sensor
drift and develop corrections as needed. We placed sensors in
the middle of the water column, and as close to the thalweg
as possible. The sensor sites downstream of confluences were
placed at least 20 stream widths downstream of the conflu-
ence to ensure mixing (Siders et al. 2017). These sites were also
placed to minimize the potential influence of additional
downstream tributaries.

For calculations of longitudinal hydrologic connectivity,
light availability, and DO saturation, we gathered meteorologi-
cal and hydraulic data from several sources, described in detail
in Diamond et al. (2021). These data include hourly atmo-
spheric pressure (kPa), open-sky insolation (W m�2), daily
mean discharge (Q; m3 s�1), specific discharge (q; mm d�1),
stream depth (m), water velocity (v; m s�1), and wetted chan-
nel width (m) for each site. We assumed spatially constant
q within each catchment, allowing us to extrapolate Q at each
measurement point (Fig. 2, blue triangles) to our sites based
on their associated drainage area. Using site-scaled Q, we
modeled stream depth, width, and v from an empirical reach-
based hydraulic geometry model with high accuracy and low
bias for our study region (Morel et al. 2020; Diamond
et al. 2021). We further obtained an hourly shade factor (unitless)
for each site using a previously developed shade factor model for
the Loire basin (Loicq et al. 2018; Seyedhashemi et al. 2022). The
shade factor varies between 0, indicating full light at the stream
surface, and 1, indicating complete shade. We calculated hourly
light for each site by multiplying open-sky insolation by the
complement of the site-specific shade factor.

We applied a series of quality controls to DO data prior to
analysis. Briefly, we (1) averaged 15-min data to hourly resolu-
tion to reduce file sizes and processing time, (2) removed data

that were extremely noisy, collected in dry conditions, or oth-
erwise of suspect quality, and (3) corrected for sensor drift. For
hourly data that passed quality control (nDO = 195,720), we
calculated hourly DO equilibrium saturation (DOeq) using
water temperature and barometric pressure at sea level
corrected for site elevation with the Garcia–Gordon model
(Garcia and Gordon 1992). Additional detail on these quality
controls are described in Diamond et al. (2021). For all subse-
quent analyses, we used the relative percentage DO saturation
(DOsat = 100 � DO/DOeq) to control for regional drivers of
pressure and temperature. Finally, to reduce the effects of
instrument noise on subsequent synchrony analyses, which
can be considerable (Fig. S1), we smoothed all hourly time
series with a 2nd order lowpass Butterworth digital filter (criti-
cal frequency = 0.24) using the butter() function from the sig-
nal R package (signal developers 2013).

Data analyses
Synchrony in DO, light, and temperature

We calculated the synchrony of hourly DOsat, temperature,
and light at the stream surface using the Kuramoto order
parameter, r (Kuramoto 1975), which permits simultaneously
analyzing many oscillators (i.e., sites) (Acebr�on et al. 2005).
Throughout, we used stream temperature synchrony as a
reference point for synchrony in DOsat and light. Given
N oscillators, each with an instantaneous phase θj in a
complex plane, r is the magnitude of their average vector
z with average phase ψ (Fig. 3):

reiψ ¼ z¼ 1
N

XN

j¼1

eiθj

when r = 1, the phases of all N oscillators are identical
(i.e., perfect synchrony), whereas when r = 0, the phases are
distributed evenly around a complex plane circle (i.e., perfect

Fig. 3. Time series of three sites with the geometric interpretations of their Kuramoto order parameter, r, at two times, t1 and t2. (a) Time series for each
site is colored and presented with arbitrary y-axis values and continuous time on the x-axis; it is clear that site1 and site2 behave more synchronously than
site3. The instantaneous phases, θj, of the three sites are shown for (b) t1 and (c) t2 as likewise colored points on the unit circle. Their average vector is
given by the complex number reiψ, shown as an arrow. At t1 the sites are more synchronous than they are at t2, which is indicated by the magnitude of
the vector, r.
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asynchrony). Hereafter, we operationally use “synchrony” to
refer to r.

The Kuramoto approach is a valuable complement to Pear-
son correlations widely used in the synchrony literature
(Koenig 2002; Pace and Cole 2002; Zanon et al. 2019), and it
requires less computation than wavelet analyses (Sheppard
et al. 2017, 2019). Moreover, the Kuramoto order parameter is
useful in that it estimates instantaneous synchrony, not aggre-
gate synchrony at time steps longer than the unit of measure-
ment, which would otherwise be invisible with classical
correlations analyses. Wavelet analyses also provide such
detail, and may be appropriate diagnostics of synchrony when
multiple time scales are of interest (Walter et al. 2017, 2021).

We measured θj of each hourly time series using the Hilbert
transform from the ifreq() function in the R package seewave
(Sueur et al. 2008). Prior to analysis, we detrended and
z-scored each time series using the cleandat() function in the
wsyn package (Reuman et al. 2021). We further linearly inter-
polated missing data with a maximum gap of 6 h (0.7% of all
data); data gaps greater than 6 h were not filled. Synchrony
calculations require no missing data so sites with missing data
were not included in analysis. To minimize this information
loss, we analyzed the data in weekly time steps so that even if
a site was removed due to a data gap in a particular week
(e.g., due to drying), it could still be included in analyses for
other weeks. Subweekly approaches would have been just as
valid, but increased computer processing time, and data gaps
were typically at least 1 week in length. The number of sites
used in each weekly synchrony analysis ranged from 7–35
(mean � SD; 28 � 5), 22–35 (29 � 4), and 10–29 (22 � 6) for
stream temperature, light, and DOsat, respectively. Weeks with
the least sites were in summer 2020 when many low-order
streams held no flowing surface water. Overall, we analyzed
the following number of hourly data points for DOsat

(n = 195,720) temperature (n = 223,436), and light
(n = 111,737, only calculated for daylight hours). Despite a
varying number of sites throughout the analysis period, we
observe that r is robust to this variation, in particular when
analyzing more than 10 sites (Fig. S2).

To test our hypotheses, we calculated synchrony (i.e., r) for
two site groupings: (1) across all sites, regardless of catchment
or Strahler order, and (2) between flow-connected sites. In
general, large phase differences among sites are required to
substantially affect r, especially when analyzing many sites
(Fig. S2), such that values less than 0.8 indicate relatively high
asynchrony among sites. For flow-connected sites, synchrony
was measured in pairwise fashion for all possible site pairs
(npairs ≤ 112) in any given week. For this analysis, r indicates
the instantaneous phase difference between two sites: a value
of 1 indicates in-phase, a value of 0 indicates anti-phase, a
value of 0.7 indicates a 90� phase shift, a value of 0.5 indicates
a 120� phase shift (for perfect sinusoids). In the context of
paired site analysis, a consistent 90� or 120� phase shift
between sites could indicate that the time difference between

diel DOsat maxima (or minima) is 6 or 9 h, respectively. Over-
all, the all sites analysis allowed us to evaluate regional syn-
chrony in DOsat signals, highlighting the time-varying effect
of light synchrony. By complement, the flow-connected (site
pairs) analysis allowed us to quantify the importance of along-
network signal smoothing on DOsat synchrony.

Calculating flow connectivity
To determine flow connectivity between sites, we first calcu-

lated a site-specific daily DO integration length, LDO, [L], which
is the upstream length of influence for the measured DO signal.
We chose the term “DO integration length” over the previously
used “DO footprint” (cf. Demars et al. 2015) because a “foot-
print” has two dimensions, whereas our focus is the along-
channel linear dimension. DO signals at a point are most
strongly influenced by processes occurring just upstream, with
exponentially declining influence with distance upstream.

The LDO depends on v [L T�1], which controls the down-
stream translation of a DO signal, and the atmospheric gas
exchange coefficient, K [T�1], which controls how quickly that
signal is erased (Chapra and Di Toro 1991; Demars et al. 2015).
We describe LDO as the distance at which 5% of the upstream
DO signal persists (i.e., 3v/K). Both v and K are time varying, and
depend of stream hydraulics and temperature. We calculated
K as the temperature-dependent (i.e., Schmidt number-corrected)
and depth-corrected value of the standardized gas transfer veloc-
ity, k600 (Wanninkhof 1992), which we estimated as the average
of four empirical equations (eqs. 1, 3, 4, and 5 in table 2 of
Raymond et al. 2012) that depend on our daily estimates of
stream geometry and hydraulics (Diamond et al. 2021).

We then calculated the ratio between the daily LDO for
each downstream site of a flow-connected pair and the chan-
nel length distance to the upstream site, dsite, [L]. This (dimen-
sionless) connectivity ratio (C = LDO/dsite) was used as a proxy
of flow connectivity. When the connectivity ratio is large
(C � 1), the DO diel signal at the upstream site directly influ-
ences the signal at the downstream site through signal advec-
tion. In contrast, when the connectivity ratio is small (C < 1),
synchrony between DO diel signals is not driven by signal
advection. The C between any two sites will change as temper-
ature, v, and K change.

Hypotheses testing
We evaluated our hypotheses in two ways. First, we created

a heatmap of our synchrony estimates to visually compare
with Fig. 1, allowing us to map the influence of—and interac-
tion between—flow connectivity (using C) and light syn-
chrony (using the light synchrony r parameter). We expected
that light synchrony was the most important control on the
temporal alignment of primary productivity across sites and
therefore the synchrony of DOsat signals. This is distinct from
homogeneity in light magnitude to the stream benthos,
which should primarily control the magnitude of primary pro-
ductivity (Kirk et al. 2021), and thus the amplitude of diel
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DOsat signals (Diamond et al. 2021). To clarify, we measured
the phase of signals, not their magnitude.

One of the predictions from our hypothesis that flow
connectivity increases DOsat synchrony is that synchrony
between flow-connected sites with low C (i.e., C < 1) should
be similar to the mean synchrony of flow-unconnected sites.
In other words, when C < 1, the upstream site is not sharing
DO information with the downstream site and their syn-
chrony should be indistinguishable from two unconnected
sites. We evaluated this prediction directly by comparing the
daily mean synchronies of all flow-connected sites to flow-

unconnected sites as a function of C. There were 1347
unique pairs of flow-unconnected sites compared to the
112 unique pairs of flow-connected sites for this analysis. For
C < 1, these synchronies should be statistically equivalent,
but for C > 1, the flow-connected synchronies should
be greater than flow-unconnected synchronies. Therefore,
for a given site, on day d we calculated (1) C with a flow-
connected upstream site, (2) its DOsat synchrony with a flow-
connected upstream site, and (3) its mean DOsat synchrony
with every unconnected site. We then compared its flow-
connected and mean flow-unconnected synchrony across its
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range of C, and simplified these visually with generalized
additive models.

As a second test of our hypotheses, we used a multiple
regression model to quantify the relationships between DOsat

synchrony and both light synchrony and C. The model
considered DOsat synchrony as the dependent variable and
light synchrony, C, and their interaction as predictors
(Eq. 1). We developed a parallel model with temperature as
the dependent variable to provide a benchmark for inter-
preting patterns observed for DOsat (Eq. 2). We did so with
the prediction that temperature synchrony would be more
independent of light synchrony and flow connectivity than
DOsat because its temporal signal is primarily driven by
regional air temperature patterns (Seyedhashemi et al. 2021,
2022) and because heat transport lacks the rapid erasure due

to gas exchange that controls, and shortens, the DO signal.
Hence, larger fitted effect sizes for DOsat than for temperature
provide additional support that light synchrony (through its
control on primary productivity) and flow connectivity
(through its control on signal integration) drive DOsat syn-
chrony. For these two multiple regressions, for each day,
there were 112 possible upstream–downstream site pairs,
each with a different C and pair-specific r for light, tempera-
ture, and DOsat. There were overall 12,840 site-pair-day com-
binations. To reduce both temporal autocorrelation effects
and inflated F-statistics from the large sample size, we performed
the regressions on binned data. We binned the data into
n = 100 percentiles of the natural log C (lnCi for i = 1–100) as it
was log-normally distributed, and subsequently calculated mean
ri for DOsat, light, and temperature among the
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128 observations within each percentile bin. All analyses were
conducted in R (R Core Team 2020).

rDO,i ¼ β0,DOþβ1,DOrlight,iþβ2,DO lnCiþβ3,DO rlight,i lnCi
� �

, ð1Þ
rtemp,i ¼ β0,tempþβ1,temprlight,iþβ2,temp lnCiþβ3,temp rlight,i lnCi

� �
:

ð2Þ

Results
Temporal patterns in DO and its drivers

All physiochemical variables varied greatly both within and
among sites. Across Strahler orders, diel variation in DOsat and
stream temperature increased throughout March and April
2020, prior to the leaf out of riparian vegetation (Fig. 4a,b) as
light availability at the water surface increased (Fig. 4c). At the
end of April–early May 2020, vegetation leaf out occurred
(Fig. 4c), coinciding with several storm events that increased
discharge across all catchments (Fig. 4d). The combination of
these two factors corresponded to reduced diel amplitudes
(Table S1) and apparent desynchronization of DOsat (Fig. 4a)
and stream temperature (Fig. 4b) across orders. In July, stream
flow began to decline dramatically across all orders, but was
most pronounced for Strahler order 3 (Fig. 4d). Between July
and mid-September 2020, 32 sites ceased flowing at least once,
with lower-order sites, particularly in the eastern catchments,
remaining dry for periods as long as 1 month (Fig. 4d). There
was clear variation in the timing of light inputs across Strahler
orders (Fig. 4c), and light timing was even more variable across
sites.

Synchrony in diel signals of DO, light, and temperature
Overall, synchrony of stream temperature (r = 0.94 � 0.10;

mean � SD) was higher than synchrony of DOsat (r =

0.73 � 0.20) and light (r = 0.68 � 0.22), with stream tempera-
ture nearly perfectly synchronous (r > 0.9) across all 42 sites
for most of the study. DOsat and light exhibited a similar sea-
sonal pattern, where synchrony was nearly perfect (i.e., r = 1)
in early spring, but decreased over late spring and summer
(Fig. 5a), though this pattern was more evident in 2020 than
in 2019. In fall, light synchrony clearly increased, but DOsat

synchrony was largely unchanged from late spring and sum-
mer. When evaluated only within flow-connected sites,
synchrony of all variables increased (Fig. 5b); yet stream tem-
perature (r = 0.95 � 0.15) was more synchronous than light
(r = 0.84 � 0.25) and DOsat (r = 0.83 � 0.25). Outside of the
vernal window, DOsat r values among flow-connected sites
indicate mean phase differences in DO signals between
6 and 9 h.

Example time series from the Loise catchment demonstrate
how hourly synchrony across stream orders varied among
contrasting periods of light synchrony and flow connectivity
(Fig. 6a–d). During early spring, before leaf-out, with relatively
synchronous light across the five catchments (Fig. 5) and high

flow connectivity (q = 0.18 mm d�1; C ≥ 1; Fig. S3), the DOsat

signals from the nine sites within the Loise catchment were
highly synchronous (Fig. 6b), with synchrony dipping slightly
near solar noon. In contrast, synchrony in DOsat was markedly
lower just a month later, after leaf-out, despite similar dis-
charge (q = 0.21 mm d�1; Fig. 6d). In this case, the general
synchrony pattern inverted, with synchrony peaking near
solar noon (Fig. 6d). Later in the summer, when flow connec-
tivity decreased (q = 0.01 mm d�1) and incident light was
asynchronous, DOsat synchrony was lowest. During this
period, DOsat peaked at low-order sites in the mid-morning,
whereas the DOsat maxima occurred later in the day for higher
order sites (Fig. 6c). During similar low flow connectivity con-
ditions in October 2019 (q = 0.03 mm d�1), at the onset of
leaf fall when light was more synchronous, DOsat synchrony
exhibited a similar diel pattern as in early spring, but with a
pronounced dip in the afternoon (Fig. 6a). Across the study
period, the lowest DOsat synchrony (r < 0.5) predominately
occurred at night (62%), with the mode of low synchrony
occurring between 00:00 h and 01:00 h. In contrast, the
highest synchrony (r > 0.9) predominately occurred during
the day (66%), with the mode of high synchrony occurring
between 12:00 h and 13:00 h.
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Fig. 6. Hourly time series of DOsat and their synchrony. Each panel is 1 d
from four contrasting periods resulting from the interaction of light spatial
variability at the stream surface and flow connectivity similar to scenarios
depicted in Fig. 1. Each time series comes from sites in the Loise catch-
ment (n = 9, 16, 9, 16, respectively, for a–d) colored by their Strahler
order. Shown in red (secondary y-axis) is the hourly synchrony of these
time series calculated with the Kuramoto order parameter, r. the four
periods correspond to: (a) early autumn in a dry year (2019-10-14); (b)
springtime before leaf-out (2020-04-11); (c) late summer in a dry year
(2020-07-14); (d) springtime after leaf-out (2020-05-18).
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Spatiotemporal patterns in longitudinal flow connectivity
LDO were highly dynamic across sites during the study

period, often varying by an order of magnitude between high
and low flow conditions (Fig. S3a,b). Across all sites, LDO

spanned four orders of magnitude, from 50 to 55,000 m
(mean � SD = 2000 � 3900 m), but was typically less than the
mean distance between flow-paired sites, dsite (6615 � 3312 m;
range = 108–20,770 m). LDO was highly variable within each
Strahler order, with Strahler orders 2–4 (35 of 42 sites)
exhibiting the greatest variability. Strahler orders 1–2 had

LDO < 100 m during late spring and summer, while values for
Strahler order 4–5 were regularly > 1 km. Connectivity ratios,
C, were thus also temporally and spatially variable (Fig. S3c),
ranging from 0.02–10.34 (1.18 � 1.34). Strahler orders 2–4
exhibited similar C ranges (0.1–2) and medians (0.5), whereas
values for Strahler order 5 were nearly an order of magnitude
greater (Fig. S3d). For Strahler order 2, C rarely exceeded 1 dur-
ing late spring and summer, but for Strahler order 3, C was
commonly greater than 1 during the same period (Fig. S3c).

Light synchrony and hydrological connectivity as drivers
of DOsat synchrony

Synchrony in DOsat was positively related to flow connec-
tivity and light synchrony (Fig. 7) in line with our predictions.
DOsat synchrony increased with increasing flow connectivity,
and was clearly lower when C < 1 for Strahler order 2–4
(Fig. S4a). We likewise observed general increases in DOsat syn-
chrony with increases in light synchrony both across sites
(Fig. S5a) and between connected sites (Fig. S5b). Generally,
stream temperature synchrony was also positively related to C,
but the relationship was weaker than for DOsat (lower slope)
for Strahler orders 2–4, likely because temperature was highly
synchronous at all C (Fig. S4b). Moreover, DOsat synchrony
between weakly flow-connected sites (C < 1) was indistin-
guishable from synchrony between flow-unconnected sites,
while synchrony between strongly flow-connected (C > 1)
sites was much higher than synchrony between flow-
unconnected sites (Fig. S6).

Models explaining DO and temperature synchronies fur-
ther quantified the strength of light synchrony and C effects.
The multiple regression model with an interaction of mean
daily light synchrony and mean daily C (binned into 100 per-
centiles) explained 70% of the variance in mean daily DOsat

synchrony (Table 1; variance inflation factor = 1.15). The
model indicates that flow connectivity and light synchrony
effects on DOsat synchrony are of similar magnitude and influ-
ence DOsat synchrony in the same direction. The positive
interaction indicates that either of these factors boosts the
influence of the other on DOsat synchrony. In other words,
high flow connectivity between sites synchronizes their DOsat

Table 1. Multiple regression results for mean daily DOsat and temperature synchrony.

Term

DOsat (F96,3 = 76.48) Temperature (F96,3 = 62.84)

Estimates* p† Estimates* p†
(Intercept) 0.85�0.0032 <0.001 0.96�0.00094 <0.001
Light synchrony 0.024�0.0035 <0.001 0.0057�0.0010 <0.001

ln(C) 0.028�0.0035 <0.001 0.0082�0.0010 <0.001

Light synchrony: ln(C) 0.014�0.0023 <0.001 �0.00082�0.00068 0.228

R2adj 0.70 0.65

Models relate DOsat and temperature synchrony to the C, light synchrony, and their interaction, using 100 equally spaced bins of ln(C).
*Values were centered and scaled before regression and values indicate mean � standard error.
†p Values less than 0.01 are bolded.

Fig. 7. Synchrony in DOsat as a function of light synchrony and flow con-
nectivity (measured as connectivity ratio). All hourly data from the paired
synchrony analysis (n = 14,717) were plotted according to light syn-
chrony and C, and then colored according to DOsat synchrony, with yel-
low and blue colors indicating high and low synchrony, respectively. To
improve visualization and to allow direct comparison with our hypothe-
sized scenarios in Fig. 1, both axes were then binned into 20 equally spa-
ced bins (note log scale on x-axis) and mean values of DOsat synchrony
were calculated and then smoothed with ordinary kriging.
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values, but does so more dramatically when the sites have sim-
ilar light availability. While the model for temperature syn-
chrony explained a similar proportion of the variance as did
the model for DOsat synchrony (65%), the fitted slopes were
far smaller, likely due to the much higher intercept (0.96)
compared to DOsat (0.85; Table 1). These results indicate that
temperature had high synchrony, regardless of light syn-
chrony or C.

Discussion
We observed clear support for our conceptual model (Fig. 1)

hypothesizing that diel DO synchrony in headwater networks
is driven by both the spatiotemporal variation in longitudinal
flow connectivity and light synchrony (Fig. 7, Table 1). Criti-
cally, flow-connected sites were consistently more synchronous
than non flow-connected sites, despite considerable diel signal
erasure between sites. Results here demonstrate that network-
scale diel DO synchrony predictably emerges through a balance
between energetic drivers of metabolism and hydraulic drivers
of signal transport and smoothing operating at multiple scales.

Measuring high-resolution synchrony
Overall, our approach to quantify synchrony in and across

stream networks revealed how stream networks generate and
transmit DO signals, and enabled the assessment of spatiotem-
poral heterogeneity previously hidden by lower frequency
sampling. Indeed, most environmental synchrony studies
examine effects at seasonal and interannual scales (Baines
et al. 2000; Kling et al. 2000; Van Meter et al. 2020). In con-
trast, the Kuramoto order parameter allowed the evaluation of
synchrony at hourly scales (Fig. 6) across and within catch-
ments; and is worth noting as a potentially useful tool in
future ecological synchrony studies. With this tool, we were
able to observe increasing DO synchrony during the day,
implying that signals are aligned by sunlight, but then diverge
when that forcing ceases. We could also see inverted patterns
of reduced daytime synchrony when signal smoothing was
low (e.g., Fig. 6a). This is likely induced from a downstream
increase in K that prolongs the timing of DO peaks and
lengthens diel DO recession shape. Channel transient storage
and stream depth also alter diel DO signal geometry (Hensley
and Cohen 2016), leading to predictable downstream network
patterns of DO—and other solute—synchrony. Although we
conducted our analyses at daily scales (because flow connec-
tivity was only available at the daily scale), future work explor-
ing environmental synchrony at the same temporal scale as
measurement may better reveal the network-scale timing and
coupling of solute transport and transformation.

Terrestrial control on stream DO synchrony
The dual drivers of light and longitudinal connectivity on

DO synchrony reflect two facets of riparian vegetation: leaf
phenology and evapotranspiration. First, riparian leaf phenol-
ogy controls light inputs to the stream, and thus, patterns of

light synchrony. The period before vegetation sets leaves out
for photosynthesis—approximately 1 May in the study region
(Lebourgeois et al. 2008), is associated with limited riparian
shading from vegetation, and corresponded to a period of
high DO synchrony. Once leaves were out, however, temporal
variability in local light delivery arose, which led to
patchy network of temporally divergent primary productivity
signals—supported by observed decreases in DO synchrony.
We again note our focus here is on the synchrony of light
availability, not on its magnitude, which is important for
primary productivity and DO variation (Savoy et al. 2019;
Diamond et al. 2021; Kirk et al. 2021). Second, riparian
evapotranspiration can further contribute to decreases in DO
synchrony throughout the growing season by reducing
streamflow (Lupon et al. 2016) and longitudinal hydrological
connectivity among reaches. Moreover, the influence of ripar-
ian evapotranspiration on streamflow grows as discharge
decreases (Bond et al. 2002; Cadol et al. 2012), suggesting an
increasing effect of riparian vegetation on hydrologic connec-
tivity patterns over the growing season. These observations
provide additional motivation to study terrestrial–aquatic con-
nections within riparian corridors (Hynes 1975; Pinay
et al. 2018), including the synchrony of their productivity
(Bernhardt et al. 2018; Mejia et al. 2019; Walter et al. 2021)
and respiration regimes (Bertuzzo et al. 2022).

Ecological implications of DO synchrony
DO signals within and across stream networks in the Loire

headwaters synchronized under shared light synchrony and
hydrological signal smoothing. This result is not surprising
given that light and flow are the two major controls of stream
metabolic activity (Bernhardt et al. 2022). However, we sug-
gest that patterns of DO synchrony can provide additional
insights into stream network functioning within and across
catchments. For example, synchrony in networks of DO
sensors could be used to evaluate the degree of hydrologic
connectivity of ungauged networks, as our results indicate the
two are strongly linked—indeed connectivity of sites is a
much better predictor of synchrony than distance, alone
(Fig. S7). However, our focus on advective transport and signal
smoothing may not be the only mechanism linking flow con-
nectivity to DO synchrony. Indeed, even at C = 1, which
implies 95% signal loss between sites, we observed high DOsat

synchrony, even under asynchronous light conditions. More-
over, our results demonstrate that at C < 1 (e.g., 0.1–0.5;
Fig. S6), corresponding to signal loss between stations near
100%, connected sites are more synchronous than discon-
nected sites. This result points to alternative explanations for
how connectivity leads to synchrony. Perhaps most obvious is
that high flow may induce similar environmental conditions
for respiration and productivity across the network such that
high connectivity is not so much smoothing variation among
hotspots, but instead imposing common metabolism through-
out. Regardless, the clear link between flow connectivity and
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DO synchrony suggests their coupling and given the relative
ease of DO sensor installation vis-à-vis hydrologic stations,
perhaps there is utility in using DO sensor networks to esti-
mate hydrologic conditions.

Our results also have implications for modeling stream
metabolism at stream network scales. As DO datasets grow
(e.g., Appling et al. 2018b) and demand increases for stream
metabolism estimates (Bernhardt et al. 2018), researchers will
need to be careful about their assumptions when scaling site
level estimates to networks, catchments, and regions (Koenig
et al. 2019; Diamond et al. 2021; Segatto et al. 2021). Modern
metabolism methods rely on (at least) two key assumptions
that our work adds nuance to: (1) a direct link between dis-
charge and gas exchange, and (2) a link between peak primary
productivity and solar noon. First, we clearly show that dis-
charge is not just a critical component that controls
(Raymond et al. 2012) and constrains gas exchange estimates
(Appling et al. 2018a), but it also drives the integration length
of metabolic signal origins. Hence, when scaling estimates
from reaches to networks, the orders-of-magnitude temporally
variable LDO that defines a DO signal reach is of clear impor-
tance and may confound traditional applications of “reaches”
as the places between confluences (cf. Segatto et al. 2021). Sec-
ond, we demonstrate that care must be taken when using
insolation estimates (e.g., with latitude and longitude) or
regional measurements to scale metabolism at network scales
as local conditions demonstrably desynchronize the temporal
availability of sunlight for primary productivity. Finally, we
suggest that network scale DO synchrony, which can be evalu-
ated at subdaily time scales, is a useful complement to meta-
bolic measurements, which are typically constrained to daily
time steps. As primary productivity is a direct function of tem-
poral light patterns (Bernhardt et al. 2022), and respiration is
likely dynamic with subdaily variation in temperature and
oxygen (Demars et al. 2011), we envision studies of signal syn-
chrony yielding new insights that deconvolve these signals.
More broadly, improving our capacity to assess metabolic forc-
ing at finer than daily time scales will enable new ways of
thinking about and assessing the magnitude and resilience of
biological functions at the scale of whole river networks.

Conclusions
Our work here produces four primary conclusions. First,

synchrony in stream DO, temperature, and light can be high
within and across regional headwater stream networks, with
DO synchrony strongly driven by high flow connectivity and
light synchrony at the stream surface. Hence, reduced-
complexity models of subdaily DO and metabolism can proba-
bly be used during high flow periods with synchronous light
conditions. In contrast, when environmental conditions are
dominated by local factors (shading and variable flow connec-
tivity), more complex models or more observation effort is
needed. Second, flow-connected sites are consistently more

synchronous than flow-disconnected sites even when the
signal information passing between sites is small. Hence, com-
mon watershed attributes between flow-connected sites like
geology, aspect, and land use may be important but poorly
quantified controls on synchrony. Third, we identify riparian
vegetation phenology as a strong control on the proximal
drivers of DO synchrony, providing a further linkage to be
explored between terrestrial and aquatic ecosystem metabolic
coupling. Finally, the general concepts and findings of local
vs. regional drivers of stream DO synchrony are adaptable to
research investigating the causes and implications of stream
network synchrony for other ecological conditions from nutri-
ents and organic matter to metabolic processes.

Data availability statement
Code to replicate analyses is available at: https://github.

com/jakediamond/DO_synchrony_headwaters. Data to repli-
cate analyses is available at: http://www.hydroshare.org/
resource/31c8b6409b9b4fa4a3aca7a085cda95d.
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