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ARTICLE INFO ABSTRACT

Wetlands hold the highest density of belowground carbon stocks on earth, provide myriad biogeochemical and
Keywords: habitat functions, and are at increasing risk of degradation due to climate and land use change.
3D Microtopographic variation is a common and functionally important feature of wetlands but is challenging to
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Hummock quantify, constraining estimates of the processes and functions (e.g., habitat diversity, carbon storage) that it
Hollow regulates. We introduce a novel method of quantifying fine-scale microtopographic structure with Terrestrial
Hydrology Laser Scanning using 10 black ash (Fraxinus nigra) wetlands in northern Minnesota, USA as test cases. Our
Terrestrial LIDAR method reconstructs surface models with fine detail on the order of 1 cm. Our independent validation verifies the
ilugtzl;t:dnl surface models capture hummock (local high points) and hollow (local low points) features with high precision
Sensitivity (RMSE = 3.67 cm) and low bias (1.26 cm). A sensitivity analysis of surface model resolution showed a doubling
Model resolution of model error between 1 cm and 50 cm resolutions, suggesting high-resolution reconstructions most precisely
Classification capture surface variation. We also compared five classification methods at resolutions ranging from 1 cm to 1 m

and determined that maximum likelihood classification at 25 cm resolution most accurately (78.7%) identifies
hummock and hollow features, but a simple thresholding of surface model elevation and slope was ideal for
hummock feature delineation, retaining over 91% of hummock areas. Finally, we test and validate a novel
microtopographic delineation method (TopoSeg) that accurately (Bias = 0.2-11.9%, RMSE = 19.6-24.1%) es-
timates the height, area, volume, and perimeter of individual hummock features. For the first time, we introduce
an accurate and automated approach for quantifying fine-scale microtopography through high resolution surface
models, feature classification, and feature delineation, enabling geospatial statistics that can explain spatial
heterogeneity of habitat structure, soil processes, and carbon storage in wetland systems.

Machine learning

1. Introduction et al., 1995). Thus, quantifying fine-scale variation in wetland surface

elevation is important to understand drivers and variability of many

Wetlands provide important biological (Semlitsch and Bodie, 2003),
biogeochemical (Capps et al., 2014), and hydrological functions
(Acreman and Holden, 2013), all largely driven by wetland soil profiles
and surface topography (Ehrenfeld, 1995; Stribling et al., 2006). Mi-
crotopography, or the small scale (10~ '-10°m) variation in ground
surface elevation, is a commonly observed, but rarely measured, feature
of wetlands. Small microtopographic changes often have major im-
plications, creating spatial heterogeneity in biogeochemical and habitat
conditions. Even slightly elevated areas can have reduced soil moisture
and thus increased oxygen availability, with important implications for
soil nutrient cycles (Courtwright and Findlay, 2011), plant regeneration
and productivity (Watts et al., 2010), and carbon processing (Bubier

wetland functions, particularly their critical role in global carbon
budgets (Sullivan et al., 2008).

The structure and spatial pattern of microtopographic wetland
features vary widely across systems and are inherently challenging to
quantify with fine-scale resolution. Wetland microtopography is often
typified by local high points (“hummocks”) interspersed among more
abundant low points (“hollows”). Despite the importance of micro-
topography on wetland structure and function, methods to quantify it
are still rudimentary. Many studies use manual surveys or transects
combined with high precision GPS or other survey-grade instruments
(e.g. TotalStation), at relatively coarse (1 m) intervals (Ehrenfeld, 1995;
Lorente et al., 2012; Pouliot et al., 2011), but transects are unable to
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effectively represent or compare differences in spatial microtopo-
graphic patterns (Moser et al., 2007). Further, most studies on micro-
topography make no attempt to measure fine-scale microtopographic
variation itself, instead, relying on categorical analysis of differences
between predetermined or field-defined microtope groupings (e.g.,
hummocks versus hollows).

Remote sensing provides more objective and fine-scale measure-
ment of wetlands, enabling better characterization of microtopography.
Unoccupied aerial vehicles (UAVs) and structure from motion (SFM)
are promising for mapping wetland features (Kalacska et al., 2017), but
can only be effectively used in vegetation-free environments. Airborne
light detection and ranging (LiDAR) can characterize microtopography,
but surface point density and geo-positioning errors reduce the poten-
tial resolution and precision of surface models, especially in forested
systems. As a result, most studies using LiDAR to quantify wetland
features produce surface models of relatively low resolution (e.g.,
~1-2 m; Richardson et al., 2010). Some recent studies obtained higher
resolution surface models (e.g., ~0.5m; Baltensweiler et al., 2017;
Hopkinson et al., 2005; Knight et al., 2009; Lovitt et al., 2017;
Miroslaw-Swiatek et al., 2016), but many microtopographic features
are often 0.10-0.30 m in diameter and height (Peterson and Baldwin,
2004, Anderson and Lockaby, 2007, Stribling et al., 2006). This mis-
match in scales of microtopography and surface model resolution sug-
gests the need for more fine-scale three-dimensional surface modeling.

Terrestrial laser scanning (TLS) is stationary ground-based LiDAR
that produces orders of magnitude higher point cloud density than
airborne instruments over smaller areas and provides the necessary
detail for capturing fine-scale microtopography. The recent advances of
TLS methodology and processing approaches in forest ecology (Atkins
et al., 2018; Liang et al., 2016; Stovall et al., 2018, 2017; Stovall and
Shugart, 2018), hydrology (Hohenthal et al., 2011), and geomor-
phology (Stenberg et al., 2016) suggest the potential for new applica-
tions and analyses in complex microtopographic systems. While the
stationary nature and shallow view angle of TLS presents challenges in
sufficient surface coverage—especially in high density understory and
ground vegetation (Anderson et al., 2010)—no other technique can
resolve fine-scale structure with such detail and with rapid field ap-
plication.

Despite the advantages of TLS, few studies have used it to quantify
microtopographic structure (but see Anderson et al, 2010;
Baltensweiler et al., 2017; Rodriguez-Caballero et al., 2016; Stenberg
et al., 2016). Of those, no single work has offered a sufficient sampling
strategy for larger areas, incorporated a consistent validation method,
or assessed the impact of model resolution on quantifying microtopo-
graphic variation in wetland systems. In addition, studies lacking ve-
getation cover (e.g., Stenberg et al., 2016) are not representative of
many wetland systems, where dense understory or grasses are common
and limit the number of LiDAR returns reaching the ground surface.
Last, insufficient TLS sampling (Anderson et al., 2010; Stenberg et al.,
2016) typically limits modeling accuracy, and the spatial extent of most
studies is less than ~80 m? (Anderson et al., 2010; Rodriguez-Caballero
et al., 2016; Stenberg et al., 2016), reducing areas of inference and
upscaling capacity. One study extensively validated surface models
across a large 2 ha mountainous area, but the finest surface model re-
solution (20 cm) may still be too coarse for many wetland applications
(Baltensweiler et al., 2017). Consequently, we suggest that TLS methods
in wetland systems must be improved and standardized to ensure un-
biased and precise quantification of microtopography.

Limitations of past studies highlight the need for refined TLS
methodologies. These should be developed through studies across a
range of wetland environments with a consistent sampling strategy,
extensive independent validation that can be conducted at the time of
TLS sampling, and a fine-scale sensitivity analysis of model resolution.
High-resolution microtopographic surface models can potentially pro-
vide objective wetland classification, but there is a paucity of reliable,
high-resolution surface modeling techniques specific to the challenges
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in wetland systems (e.g., ponded water and dense vegetation). Further,
higher level three-dimensional analyses of fine-scale microtopography
are non-existent in the literature. Specifically, the development of a
methodology for rapid and accurate segmentation of individual mi-
crotopographic features (i.e., hummocks and hollows) would improve
our understanding of their size and spatial distributions, providing
greater insights into their role in wetland function (cf. Casey et al.,
2016).

Our objectives were: 1) assess the precision and accuracy of high
resolution surface models created using refined TLS field sampling,
specifically for capturing microtopographic structures in wetlands, 2)
determine the impact of model resolution on microtopographic model
reconstruction, 3) assess hummock classification accuracy at a range of
resolutions using common landform classification methods, and 4) de-
velop and assess a novel method, we call TopoSeg, for delineating in-
dividual microtopographic structures (e.g. hummocks) and quantifying
their geometric properties. These objectives provide the structural sub-
headings used in the Methods, Results and Discussions sections. We
believe that establishing a standard methodology for TLS microtopo-
graphic data collection and processing will encourage its use in wetland
systems across the globe, enabling comparative analysis and addressing
system-specific questions.

2. Study site

We investigated ten black ash (Fraxinus nigra Marshall) wetlands in
northern Minnesota, U.S.A (Fig. 1). Using hydrogeomorphology, we
characterized each wetland into 3 classes: 1) depression sites (“D”,
n = 4) characterized by convex, pool-type geometry surrounded by
uplands, 2) transition sites (“T”, n = 3) characterized as flat, linear
boundaries between uplands and black spruce (Picea mariana [Mill.]
B.S.P.) bogs, and 3) lowland sites (“L”, n = 3) characterized by a flat,
gently sloping topography. Within each group, wetlands exhibited si-
milar water level dynamics (Table 1) and soils, which were typically
deep mucky peats underlain by silty clay mineral horizons. Within each
site, we established three clustered 300 m? sampling circular plots
(~9.8 m radius) located around a randomly established point at each
site (Fig. 2).

3. Methods

3.1.1. TLS acquisition

To ensure high-quality TLS acquisitions, we planned our TLS cam-
paign to coincide with the time of least vegetative cover and the least
likelihood for aboveground water. We scanned sites from October
20-24, 2017, averaging two to three sites per day (Table 1). During
scanning, leaves from all deciduous canopy trees were off, grasses had
largely senesced, and standing water was present at portions of three of
the sites (D1, D2, and D3). Where standing water was present, it was
typically < 10 cm deep and constrained to small pools (ca. 0.5-2m?)
dispersed across the site (Table 1).

To capture high-resolution surface topography, we deployed a Faro
Focus 120 3D phase-shift TLS (905 nm ) in each of the three clustered
plots at each wetland site (Table 1). This phase-shift laser scanner has
several notable limitations and benefits relevant to microtopographic
surface modeling in wetland systems. The 905 nm wavelength coincides
with a range of wavelengths with high water absorption, potentially
reducing return intensity at the surface of wet soil, or completely
eliminating returns in inundated locations. Other laser scanners, par-
ticularly those in the green spectrum (e.g. 532nm) would be more
appropriate choices for wetlands with significant inundation. The
single-return nature of the Faro Focus 120 3D should also be con-
sidered, as returns are limited at the deepest layers of understory ve-
getation and grasses. Conversely, the high resolution and low beam
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Fig. 1. Illustration of microtopography and vegetation typical of site types: lowland (L3), transition (T2), and depression (D2) sites. Lowland sites had the least
pronounced microtopography, whereas transition sites and depression sites had more obvious hummock edges and greater elevation differences between hummocks
and hollows. Transition sites typically had more complex, undulating hummock features, whereas depression sites exhibited more circular hummock features.
Transitions sites also had considerably denser understory (i.e., shrubs) than depression or lowland sites, although lowland sites also had a dense grass understory.

divergence mitigate issues of occlusion in dense understory. Though
noise in the LiDAR data of phase-shift instruments is often an issue in
natural environments, appropriate filtering algorithms improve the
resulting point clouds. Finally, phase-shift laser scanners are also sig-
nificantly lighter in weight, have fast scan times, and are notably less
expensive than other time-of-flight sensors with similar specifications.

We strategically planned our LiDAR acquisitions so all three plot-
level scans could be merged for a single ~900 m? site-level LiDAR da-
taset. Depending on the density and complexity of understory vegeta-
tion, we used one of two configurations for plot-level scans to minimize
occlusion of the ground surface (Fig. 2). In open-understory depression
sites, the TLS was placed at the plot center and four surrounding lo-
cations approximating the cardinal directions, with the distances (ap-
proximately 10 m) from the center point dictated by the wetland shape
and size (Fig. 2A). In this configuration we scanned at higher resolution
(28.2 million pulses per scan) to compensate for reduced scan locations.
In mid-density sites (e.g., transition and lowland sites) we opted for
increased scan positions at lower resolution (approximately 10 million
pulses per scan) placed in a ten meter-spaced grid network within each
plot to reduce occlusion of the ground surface (Fig. 2B). With the
second scan configuration, we collected an average of nine scans per
plot and approximately 300 million pulses per site. In total, 197 scans

Table 1

were collected across 30 plots and 10 study sites.

To facilitate scan registration, we placed ten 7.62 cm radius spheres
for maximum visibility in each plot. Once scans within a plot were
completed, all registration spheres, except 2-3 immediately adjacent to
the subsequent plot, were relocated to the next plot location. The re-
maining, unmoved, spheres were included in the initial scans of the
subsequent plot to facilitate site-level registration. Immediately after
the initial three scans on the second plot, the registration points used to
register the plots together were moved, to link to the next plot of in-
terest. This approach and the close plot clustering within a site fa-
cilitated registration across the three plots, ultimately allowing site-
level TLS data for large area surface models.

3.1.2. Field protocol for TLS surface model validation

To validate the TLS surface model products, we installed twenty
2.54 cm radius spheres on 1.40 m fiberglass stakes such that the spheres
were exactly 1.20 m above ground surface (Fig. 2C; D). We placed va-
lidation spheres approximately plumb to reduce errors due to hor-
izontal misalignment. We located the validation points directly in the
TLS data to assess the precision and accuracy of the final surface
models; we subtracted 1.20 m from each located validation point to get
the true height of the soil surface. While this method of surface model

Summary of site information, TLS registration statistics, and acquisition parameters.

Site Latitude Longitude Elevation (m) Size (ha) Sample date

Registration statistics (m)

Scan metadata Water table (m)

Mean SD Max Positions Pattern Resolution Pulses Water Mean SD
(mrad) (Mpts)
L1 47.100 —92.545 403 2191  22-Oct-2017  0.004 0.0048  0.0338 24 Dense 0.070 657 - —0.255 0.462
L2 46.916  —93.359 391 6.845  22-Oct-2017 0.0033 0.004 0.0226 23 Dense 0.070 630 - —0.346 0.543
L3 47.078 —91.774 394 1.455  22-Oct-2017  0.0041 0.0083  0.0619 24 Dense 0.070 657 - —0.370 0.502
D1  47.672 —93.684 447 5.697  23-Oct-2017 0.0027  0.0039  0.0209 18 Open 0.044 784 + 0.012 0.179
D2  47.281 —94.384 425 6.499  20-Oct-2017 0.0067  0.0047  0.0524 13 Open 0.044 566 + —0.007 0.156
D3 47.284 —94.380 429 6.062  20-Oct-2017 0.0036  0.0038  0.0155 12 Open 0.044 523 + 0.053 0.196
D4  47.280 —94.486 442 0.491  21-Oct-2017  0.0041 0.0039  0.0159 12 Open 0.044 523 - —0.008 0.151
T1 47.837 —93.713 424 15.659  23-Oct-2017  0.0011 0.0024  0.0146 21 Dense 0.070 575 —0.001 0.125
T2  47.679 —93.915 447 8.618  23-Oct-2017 0.0049  0.0059 0.033 19 Dense 0.070 520 - —0.048 0.202
T3  47.276  —94.487 432 1.938  21-Oct-2017 0.0029  0.0034  0.0142 23 Dense 0.070 630 - —0.069 0.217

+ Standing water present or site partially inundated.
-Standing water absent from site.
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Fig. 2. Scan configuration in (A) open and (B) dense understory, with red “X” symbols indicating scan locations. The three clustered 9.8 m radius plots for each site
are shown in grey. The open understory configuration emphasized precise, high resolution surface models, and the dense understory configuration was optimized to
minimize hummock and hollow occlusion in the final model. (C) We assessed model precision and accuracy with 20 validation points placed 1.2 m aboveground
(hillshaded surface model shown in background). (D) We located the validation points in the TLS scans and subtracted 1.2 m from the validation point height to
estimate the height of the true ground surface. The transect shows a 10 m long by 10 cm wide area extracted from the identified TLS ground returns. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

validation used the same instrumentation for model creation and vali-
dation, we did not rely on the validation points for model creation,
making the two datasets independent. An added benefit of this method
is that the ranging error for the TLS was on the order of 5mm, sig-
nificantly less than the location error typical of precision GPS units,
though slightly higher than a total station. Moreover, since our method
does not rely on the number of available GPS satellites, it was less in-
fluenced by dense canopy cover and understory vegetation, making it
more suitable for assessing fine-scale topographic variation in a range
of site conditions. Lastly, this approach avoided the need for additional
instrumentation in remote field locations, allowing model validation at
the time of the TLS acquisition.

3.2. Model development

In the following four sections, we describe the stages of a processing
pipeline used to create high-resolution surface models from raw TLS
point cloud data and create segmented hummock features for deriving
geometric properties, such as height, area, perimeter-area ratio, and
volume (Fig. 3). In Stage 1, the raw TLS scan data are merged, pro-
cessed, and filtered. Stage 2 removes overlying vegetation from the
merged TLS data and produces the initial microtopographic surface
model. Stage 3 detrends site-wide topography and classifies potential
hummock areas. Finally, Stage 4 uses a modified watershed delineation
approach (TopoSeg) to detect and segment individual hummock fea-
tures. Sensitivity analyses and error assessment of the surface models
and the TopoSeg algorithm, including an analysis of more sophisticated
classification algorithms are detailed in Section 3.3.

3.2.1. Stage 1: post processing

We registered and filtered TLS scans using the algorithms included
in Faro SCENE (SCENE (version 5.4.4.41689), 2015). Registration for
each plot relied on digital recognition of registration spheres (n = 10;
see Section 3.1.1). All visible spheres were digitally located in each scan
and aligned with corresponding spheres in other scans from that plot.
Plot-level registration error was quantified as the least squares fit of

corresponding  sphere objects in SCENE (mean = 3.77 mm,
sd = 4.85mm). High precision in the registration stage — below the
target resolution of the final surface model - is essential for quality
surface models. We reduced noisy LiDAR returns for object edges and
points close to the TLS range limit with intensity and stray point filters
(Fig. 3, Stage 1) following Stovall et al. (2017). Specifically, the in-
tensity filter removes “dark returns” (< 650 intensity; maximum in-
tensity = 2100), the threshold of which was chosen to ensure distant
low intensity returns were excluded, but high-moisture soil returns
were retained. We also implemented a stray point filter to eliminate
ambiguous ranging errors via a moving 3 X 3 grid cell window with a
20% retention and 1 m distance threshold (Stovall et al., 2017). We
exported the filtered point cloud data in XYZ (ASCII) format for further
processing.

3.2.2. Stage 2: microtopographic surface model generation

We created a high-resolution (1 cm) surface model for each site from
the registered and filtered point cloud data using a series of steps
(Fig. 3, Stage 2) and the command line mode of CloudCompare software
(Othmani et al., 2011). We first clipped the point cloud to 1 m above
and below the approximate ground surface to reduce computation time.
We then used two iterations of a statistical outlier removal filter to
remove spurious and noisy scan points that would distort the final
surface model (Rusu and Cousins, 2011). The filtering method, based on
the Point Cloud Library (PCL), assumes a Gaussian distribution of
nearest neighbor distances. Point distances exceeding a defined
threshold of standard deviation from the mean point distance are
deemed outliers and are removed. We identified outliers as points ex-
ceeding two standard deviations of the mean of 6 nearest neighbors
(Stovall et al., 2017).

We rasterized the point cloud with the rasterize tool in
CloudCompare, using the absolute minima in a moving 5mm grid
(Fig. 4A). The method did not interpolate elevation values in empty
raster cells. A triangulated irregular network (TIN) method - creating a
three-dimensional surface of the point cloud with interconnected tri-
angles — can be used at this stage for an alternative surface model, but,
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Fig. 3. [A] Processing workflow and [B] set of analyses for assessing the microtopographic surface modeling and hummock delineation. In Stage 1, the raw TLS data
undergo initial post processing, filtering, and are exported. Stage 2 removes overlying vegetation and creates the 1 cm surface model. Stage 3 normalizes the surface
model and identifies area to focus hummock detection. Finally, in Stage 4, local maxima are detected and, with a watershed delineation approach (TopoSeg),
hummocks are detected for site-level hummock statistics. [B] The set of analyses were selected to assess the effects of model resolution (1 cm to 2 m), classification
method (Digital Terrain Analysis (DTA) Threshold, Random Forest (RF), Maximum Likelihood (ML), Support Vector Machines (SVM), and k-Nearest Neighbor (k-
NN)), and variable selection (based on Random Forest variable importance), as well as quantitatively validate the hummock feature delineation algorithm. The
surface modeling workflow and TopoSeg are freely available at https://github.com/aestovall/TopoSeg.

based on previous high-resolution TLS surface modeling (Baltensweiler
et al., 2017), we anticipated little difference in modeling approaches at
this high-resolution stage.

A slope analysis approach was used to remove points associated
with tree trunks, often co-located with hummocks (Fig. 4B). We im-
plemented the gradient tool in CloudCompare to calculate the slope of
the 5 mm surface model, and then used slope steepness to identify and
remove extraneous points. Through visual interpretation of several
plots, we determined a grid-cell slope value of 40% to be an appropriate
upper bound threshold to filter extraneous points from understory ve-
getation and most overlying trunk points. The slope threshold is a user
variable parameter and can be adjusted according to site conditions.

After removal of trunk and understory points, we implemented an
additional outlier removal filter following the same method as de-
scribed above (removing points with distances greater than two

standard deviations of the 6 nearest neighbors) to ensure all points
above ground level were excluded. We meshed the remaining slope-
filtered point cloud using the same local minima approach described
above at 1 cm resolution (Fig. 4). The resulting final surface model ef-
fectively represented the ground surface and was less influenced by
overlying vegetation (Fig. 4). We implemented the CloudCompare
processing within an R (R Core Team, 2017) processing framework to
automate and streamline site-level processing.

3.2.3. Stage 3: classifying hummocks versus hollows

After we created 1 cm surface models of each site, we classified the
surface model into two elevation categories: hummocks and hollows
(Fig. 3, Stage 3). We first detrended site-scale elevation gradients (ty-
pically on the order of 10 cm) that would confound our elevation-based
classification scheme. To do this, we used a standard airborne LiDAR
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Fig. 4. Transect showing the TLS point cloud and final surface model at all major processing stages (site T1 shown). (A) We start with the raw TLS point cloud and
remove overlying vegetation points using slope and outlier removal. (B) The 5mm minimum TLS point cloud is filtered by identifying points with a local slope
estimate of 40% (red). (C) The steep slope points are removed and point cloud outliers are removed, resulting in a clean point cloud for high resolution surface
reconstruction. (D) The final 1 cm surface model (blue) clearly reconstructs hummock and hollow features, without being impacted by dense vegetation (black). See
Fig. S1 (Supplementary Material) for oblique view of the above transect. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

processing approach of topographic detrending implemented in
CloudCompare (2018) with the cloud to mesh distance tool. We first
created a coarse — 2 m resolution — Digital Earth Model (DEM) from the
lowest points of the 1 cm resolution model. The coarse 2 m model was
created using a TIN approach. The method effectively removed broad,
site-level topography and resulted in less artifacts in the normalized
high-resolution surface models. We then detrended the site-wide ele-
vation gradient by subtracting the 2m site-wide DEM from the 1cm
surface model. The normalized, or detrended surface model, was used
for all future processing, including the classification sensitivity analysis
described in Section 3.3.3.

We converted the normalized surface model into a gridded set of
points and created a “pit-free” surface model using the pit-free grid
canopy function (Khosravipour et al., 2014) in the R package, lidR
(Roussel and Auty, 2018). This pit-free surface model fills gaps in the
original surface model with small disks that buffer at a specified dis-
tance (4 cm, for this study) around the points in the surface model. The
resulting rasterized surface models had less gaps and were better suited
for continuous wetland classification.

We classified the surface models using a combination of normalized
elevation and slope thresholds. To ensure our classification was as
conservative as possible in identifying potential hummock areas, we
relied on a simple digital terrain analysis (DTA) thresholding approach
common in large-scale ALS-based wetland area detection (Richardson
et al., 2009). We used a DTA threshold classification approach to
identify areas with both low elevation and low slope as hollows. To
avoid confounding hollows with the tops of hummocks (tops of hum-
mocks are typically flat or shallow sloped), we limited our classification
of hollows to the lower 50% elevations of the surface model. In order to
make the thresholds adaptive to individual site characteristics, we set
both slope and elevation thresholds as the 50th percentile of values at
each site. The ultimate goal of this simple classification was to con-
servatively limit the area included in subsequent hummock delineation,
however we also tested more sophisticated feature classification
methods, described in Section 3.3.3. After hollow classification, we
used the remaining surface model area as our domain of potential
hummocks.

3.2.4. Stage 4: TopoSeg hummock delineation
To enable analyses of individual hummock structures and pat-
terning, we developed a hummock segmentation routine — TopoSeg —

that segments hummocks into individual objects and enables the mea-
surement of a range of geometric properties (Fig. 3, Stage 4). We first
used the local maxima (Roussel and Auty, 2018) of a moving window to
identify potential microtopographic structures for segmentation. We
chose a 21 x 21 cm window for the local maxima estimation as this size
was representative of observed hummock dimensions and was ap-
proximately less than the average spacing between observed hummock
maxima. The size of the window is a parameter that can be varied ac-
cording to the model resolution and characteristic size of the micro-
topography. A height threshold defines the area above which local
hummock maxima can be identified.

The local maximum serves as the “seed point” from which we apply
a modified watershed delineation approach (Pau et al., 2010). The
watershed delineation functions as an inverse watershed function, in-
verting the elevation values in the surface model and finding the edge
of the “watershed”, which in this case are hummock edges. The defined
boundary clips and segments an identified hummock area into a single
surface model. Watershed delineation is novel in microtopographic
analysis and it can potentially provide additional information on in-
dividual hummock geometry, beyond simple binary classification. We
note, watershed delineation is also capable of effectively classifying
hummock and hollow areas, but more importantly it allows the seg-
mentation of individual hummock features, allowing both site-scale and
hummock-scale spatial analysis, useful for studies focused on the de-
velopment and spatial arrangement of microtopographic features.

TopoSeg allowed us to derive hummock-level metrics describing
total area, volume, height, and perimeter-area ratio for each of the
segmented hummock objects. These metrics are arguably the most
important for future assessment of microtopography and associated
functions as they control both the sharp redox gradients which drive
biogeochemical processing and the complex hydraulics of wetlands
(Frei and Fleckenstein, 2014; Frei and Peiffer, 2016). We calculated
area as the total number of pixels in each hummock multiplied by the
model resolution (1 cm?). Volume was calculated using the same
method as area, but multiplied by the height above the normalized
hollow surface. The method of volume estimation assumes a rasterized
surface, but other 3D methods could be implemented, specifically 3D
convex hull or TIN approaches, but, with TLS surface modeling at high
resolutions, the method of interpolation has been found to be of less
influence on surface model error (Baltensweiler et al., 2017). Perimeter
was estimated by converting our raster-based hummock features into
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Table 2

Summary of parameters used in the current study and the main findings from the analyses conducted.

Accuracy Summary

Bias

RMSE

Variables

Resolution Classification

Sites

Test

D and T sites had low RMSE and bias. L sites, higher due to surface

occlusion.

0-0.033m

0.024-0.058 m

DEM, Slope

0.0l1m

All

Model validation

1 cm resolution best for microtopographic surface reconstruction.

—0.01-0.07 m

0.025-0.13m

DEM, Slope

0.01-2m
0.1m

All

Resolution sensitivity

Surface model error increases with decreasing LiDAR return density at

surface.

DEM, Slope

All

Density dependent error

25 cm resolution is best. Maximum likelihood performed best. SVM

performed worst. DTA theshold conservatively retains hummocks.

39-70%

DEM, Slope, Roughness,

TRI, Intensity

DTA Threshold, RF, ML,
SVM, k-NN

RF

0.01-1m

D2

Classification sensitivity

25 cm resolution is best. DEM is consistently best predictor for all
resolutions. Roughness, TRI, and slope important at best resolution.

p = 0.45 KS test shows automatic delineation equivalent to manually delineated

62%

DEM, Slope, Roughness,

TRI, Intensity
DEM, Slope

0.01-1m

D2

Predictor importance sensitivity

DTA Threshold

0.01 m*

D2, T1

Hummock delineation

hummock size distributions.

distribution KS test
Hummock Delineation

1:1 comparison shows automatic delineation accurately segments hummock

features with a slight negative bias compared to manual.

—11.9-0.2%

19.6-24.1%

DEM, Slope

DTA Threshold

0.01 m*

D2, T1

Validation 1:1 Test

2 Hummock delineation relies on a 4 cm resolution DEM for the DTA threshold classification. Final surface models are derived from the 1 cm DEM for the most accurate surface reconstruction.
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polygons and extracting the edge length from each hummock. The
perimeter area ratio represents an approximation of hummock edge
complexity (Sheffer et al., 2013) — a higher perimeter:area implies
hummocks with increasingly complex edges. Understanding hummock
perimeter:area distributions may provide additional insights into the
scaling of biogeochemical processes within and among wetlands (cf.
Cohen et al., 2016).

3.3. Model assessment

To assess precision and accuracy of our microtopographic models,
we validated all site-level surface models using 600 independent sur-
face elevation estimates derived from the 2.54 cm spheres described in
Section 3.1.2. We evaluated the influence of model resolution on RMSE
and bias by varying model resolution from 1 cm to 2 m. We conducted a
detailed sensitivity analysis of error and bias by varying both model
resolution and classification methodology. Finally, at two sites (D2 and
T1), we assessed the precision and accuracy of a novel hummock de-
lineation algorithm — TopoSeg — by comparing geometric measurements
for automatic and manually segmented hummock features. See Fig. 3B
for a visualization of the analyses and Table 2 for a summary of para-
meters used and analyses conducted to evaluate microtopographic
surface model reconstruction, classification, and feature delineation.

3.3.1. Site-level surface model validation

We validated our surface models with known surface elevation
measurements and coverage density analysis. We located a maximum of
20 spheres in each scan for model validation (see Section 3.1.1; Fig. 2).
Surface validation point height was calculated by subtracting the vali-
dation stake height (1.20 m) from the center of the validation sphere z-
coordinate associated with a XY location on surface model grid. We
then matched the surface model XY coordinates with the validation
point location and compared the validation heights to surface model
elevations using a point-to-pixel distance calculation. These paired
values allowed us to assess RMSE and bias of the surface models. At all
validation points, we extracted a LiDAR return density, defined as the
number of returns per square meter, at 1 m resolution, to assess the
impact of LiDAR return density on model reconstruction errors. We
conducted this analysis for each wetland type (D,T, and L sites) and
aggregated across all sites, evaluating model error as a function of
coverage density. Finally, we applied a mask over low point density
areas, reducing uncertainty in the our final surface models.

Though our method of relying on control points placed a known
distance aboveground is less common in model validation, we found it
ideal in this study for several reasons. Typical approaches for validating
higher-resolution surface models, most often in airborne LiDAR appli-
cations, require a high-precision GPS unit measuring surface elevation
to be directly matched to a LiDAR-derived surface elevation model
(Richardson et al., 2010). In most airborne applications, the validation
points (i.e., from GPS) are presumably of significantly higher precision
and accuracy than the LiDAR returns used to construct the surface
model, and thus are appropriately used for independent surface model
validation. However, TLS ranging data have a precision and accuracy
on the order of millimeters - significantly more precise than most high-
precision GPS units. As such, we opted to use validation points (small
spheres 1.20 m aboveground) that we manually located within the TLS
data, as opposed to relying on a separate GPS unit that would poten-
tially introduce unnecessary geolocational error in the validation data.
The major benefits of using the TLS data to locate our control points for
validating our surface model include the lack of geolocation errors,
positional errors on the order of millimeters, no requirement for
transformation between coordinate systems, and by elevating the con-
trol points we mitigated occlusion from dense understory vegetation.
The approach used here is analogous to similar studies relying on a
Total Station and standing targets, but with a TLS in place as the ran-
ging instrument. We anticipate, future studies relying on TLS to capture
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microtopography will adopt a similar methodology, as it is an efficient
and precise method of evaluating ultra-fine-scale microtopographic
models with millimeter precision.

3.3.2. Sensitivity analysis of model resolution

To determine the impact of model resolution on surface model
precision and accuracy, we performed a sensitivity analysis where we
varied model resolution from 1 to 10 cm at 1 cm intervals, 10-100 cm at
10 cm intervals, and 100-200 cm at 25 cm intervals. We report model
validation error and bias both on a site (e.g., D1, L1, T1) and site-type
(i.e., D, L, or T) basis. We used the results from the sensitivity analysis
to select the optimal model resolution based on the lowest RMSE and
bias and used this resolution to model all sites.

3.3.3. Sensitivity analysis of hummock classification

To evaluate the accuracy of hummock classification, we compared
manually and automatically classified surface models at one depression
site (D2) with clearly defined hummock features. We also classified
hummocks on a portion of site T1, but excluded it from the classifica-
tion assessment, as site-wide hummock features were complex, redu-
cing our confidence in the manual approach. We omitted using a low-
land site for validation because none of these sites had obvious
hummock features that we could manually delineate with confidence.

We manually classified hummocks for the D2 site with a qualitative
visual analysis of raw TLS scans (Fig. S2, Supplementary Material).
Using the clipping tool in CloudCompare (2018), we clipped hummocks
from the raw TLS point cloud and labeled them with unique identifiers.
We manually delineated hummocks that were visually obvious and
prominent, resulting in a subset of the overall number and distribution
of hummocks. We also manually clipped large downed woody-debris
(i.e., fallen trees) and excluded them from the hummock validation to
limit the comparison to what would traditionally be considered
“hummocks”. This manual delineation process was primarily based on
field experience and knowledge of what constitutes a hummock in these
systems. In this way, our manual delineation is analogous to current
observational methods of delineating hummocks from hollows, albeit
via raw TLS data versus field observation or survey data.

Using our manual classification of hummock and hollow areas, we
assessed the impact of variable selection, model resolution, and clas-
sification methodology on hummock and hollow classification accu-
racy. We tested an array of predictive variables for machine learning-
based hummock-hollow classification, specifically the TLS surface
model, gridded minimum LiDAR return intensity, slope, terrain rug-
gedness index (TRI), and roughness — all common in LiDAR-based
wetland classification (Richardson and Millard, 2018). The predictive
variables were matched with the manually classified raster at site D2.
We randomly selected 5000 locations from the manually classified
hummock and hollow raster as our training set for classification. We
trained the classifiers with 10% of the samples and reserved 90% for
independent validation. We focused our analysis on common classifi-
cation methods used in wetland ecosystems with LiDAR datasets in-
cluding maximum likelihood (Anderson et al., 2010), random forest,
support vector machines, and k-nearest neighbor (Korpela et al., 2009),
implementing them using the Rstoolbox package in R.

We evaluated the simple DTA threshold approach that relied on
slope and the DEM (See Section 3.2.3). The DTA threshold approach
was primarily used as a conservative and inclusive estimate of hum-
mock areas, since the resulting classification would later be used in the
hummock delineation algorithm. Since this classification approach was
based on variable thresholds and not predictive in nature, we directly
compared the classification with the manually classified hummock and
hollow raster on a pixel-to-pixel basis to assess classification accuracy.

We evaluated classification sensitivity to model resolution between
1cm and 1m. All lower resolution microtopographic surface models
were based on the highest resolution 1 cm and gridded to 5cm, 10 cm,
25cm, 50cm, and 1m using k-nearest neighbor interpolation with
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inverse-distance weighting. To evaluate variable importance at a range
of resolutions, we used the unique ability of random forest to determine
individual variable importance in the final classification model for each
resolution tested. Finally, for every unique combination of resolution
and classification method we evaluated hummock classification accu-
racy and report kappa statistics to evaluate overall classification accu-
racy.

3.3.4. Hummock delineation error assessment

To evaluate the TopoSeg algorithm, we compared the size dis-
tribution and individual hummock geometric properties to a manually
delineated dataset at one depression site (D2) and one transition site
(T1), both with clearly defined hummock features. These two sites were
chosen as they had the highest confidence in manual delineation. The
validation data was created using the same manual identification ap-
proach described in Section 3.3.3, but we instead retained individual
hummock features with unique ID numbers for comparison. We directly
compared individual hummocks from the TopoSeg approach to the
same hummocks obtained from the manual delineation (Fig. S3, Sup-
plementary Material). To asses bias and error of the delineation
method, we matched manual and automatically delineated hummocks
for a subset of 50 individuals at the D2 site and 30 individuals at the T1
site. We used estimates of hummock area, perimeter:area, and volume
for the comparison. We tested for significant differences in the manual
and TopoSeg delineations using a two-tailed t-test for unequal variances
and a Kolmogorov-Smirnov test. Since the algorithm relies on a single
local maximum to delineate individual hummock features, we focused
our comparison of site-level hummock size distributions on hummocks
with 1 or 2 maxima to ensure the manual delineation and the TopoSeg
algorithm identified the same number of features, allowing a more
equal comparison.

4. Results
4.1. Site-level surface model validation

The high-resolution 1 cm microtopographic surface models (Fig. 5)
were precise (RMSE = 3.67 = 1cm) and accurate (bias =1.26 =
0.1 cm) across all sites (Fig. 6, Table 2). The gently sloping lowland
sites (L) had substantially higher RMSE and bias than the transition (T)
and depression (D) sites. The relatively high error of L-site validation
points resulted from either low point density or a complete absence of
LiDAR returns (Fig. S4; Supplementary Material). Specifically, we ob-
served overestimation of the surface model when LiDAR was unable to
reach the ground surface, leading to the greatest overestimations in
sites with dense grass cover (L sites). Overestimation was also common
in locations with no LiDAR returns, such as small hollows, where the
scanner's oblique view angle was unable to reach. We note that at some
sites surface soil moisture may also result in low-intensity returns, but
this was not a dominant control on surface model errors. See Fig. S4 for
a comparison of validation point error in relation to minimum return
intensity.

Lower return density negatively impacted model reconstruction
accuracy (Fig. 7, Table 2). In our evaluation of density dependent
model error, lower density areas of the models were more positively
biased, overestimating the height of the ground surface. Model bias
became more positive as density decreased from a saturated point
density of 10,000 returns per square meter. Lower point density loca-
tions at L sites with dense grasses had higher error, while T and D site
models were less affected (Fig. 7; See Fig. S4 in Supplementary Material
for LiDAR return density distributions). The density dependent increase
in error and bias was apparent across all validation points (Fig. 7A) and
across entire sites (Fig. 7B-C). While density affected model error, the
relative number of validation points was highly skewed to higher point
densities for the D sites, but more evenly distributed for the T and L
sites (Supplementary Material; Fig. S5), potentially increasing error
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Fig. 5. Individual 1 cm site-wide microtopographic surface models produced from Stages 1-3 of the processing pipeline along with validation points used to assess
the surface models (red circles). We removed low density areas of the surface models to reduce the impact from uncertain LiDAR returns. Hummocks, hollows, and
downed woody debris are clearly visible at D and T sites, while L sites have less evident microtopography. D sites show defined hummock features, while T sites have
more complex spatial patterns. L2 shows evidence of impacts from field sampling on the surface model, with low channel-like features where higher compaction
occurred from walking through the dense grasses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

estimates due to undersampling in low point density areas.
4.2. Sensitivity analysis of model resolution

Decreasing surface model resolution reduced precision and in-
creased bias of microtopographic surface models (Fig. 8, Table S1). At
the highest resolution (1 cm), the T and D sites had error on the order of
2.5-3 cm and had low bias (Fig. 8). Comparatively, at the highest re-
solution, L sites had higher RMSE (4.7 cm) and positive bias (2.2 cm).
Reducing the resolution of the surface reconstruction increased RMSE
(Table S1). From 1 to 50 cm resolution, RMSE increased rapidly from
3.4 to 8.4 cm, on average. Above 50 cm, RMSE stabilized between 9 and
11.2 cm. In contrast, bias varied by site (Fig. 8). For example, two L
sites were positively biased at higher resolution reconstructions and
bias increased as resolution decreased. All other sites had low bias at
high model resolution (1-5 cm) but also became positively biased when
decreasing resolution from 1 to 20 cm, except D sites, which remained

nearly unbiased at every resolution tested. For all sites, average bias
stabilized at around 2 c¢m at resolutions more coarse than 10 cm (Table
S1).

4.3. Sensitivity analysis of hummock classification

Variable selection, model resolution, and classification methodology
influenced hummock classification accuracy. Of the five variables
tested (Fig. 9) — DEM, roughness, TRI, slope, and LiDAR return intensity
— the normalized DEM was the best overall predictor for accurate
hummock classification (Fig. 10, Table S2). Depending on model re-
solution, the DEM contributed between 23 and 62% to overall variable
importance, followed by roughness, TRI, and slope (Fig. 9 and Fig. 10).
LiDAR return intensity did not improve accuracy at any tested model
resolution (Table S2). At the highest resolutions, roughness and TRI are
less sensitive to hummock areas (Fig. 10). Of the machine learning
approaches, maximum likelihood was the most accurate hummock
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Fig. 6. Site-specific distribution of model error at 1 cm resolution. Each data point represents distance from the true surface elevation (solid black line at 0 cm)
determined from validation points to the TLS-derived surface model. Sites are colored by their site-type where L are lowland sites, T are transition sites, and D are
depression sites. Positive values indicate the surface model overestimated the surface elevation, while negative values are underestimates of surface elevation. Across
all sites, the TLS surface models had low error (RMSE = 3.67 cm) and a slight positive bias (1.26 cm).

classification method (70%), while support vector machines were 40%
accurate at best (Fig. 11; Fig. 12A). Random forest and k-nearest
neighbor performed similarly across the tested resolutions, with k-
nearest neighbor performing better at resolutions above 50 cm. The
maximum likelihood method at 25 cm resolution was the most accurate
machine learning method for distinguishing between hummock and
hollow features (Kappa = 0.50, Fig. 12B), with decreasing accuracy for
more course resolution models using all classification methods. The
DTA thresholding was 91% accurate for hummock feature classifica-
tion, but less suitable for differentiating between hummock and hollow
areas (Kappa = 0.34).

4.4. Hummock delineation and error assessment

Hummocks delineated from our algorithm were consistent in dis-
tribution and dimension with manually delineated hummocks. The al-
gorithm delineation often created multiple hummock features where we
manually delineated large, contiguous hummocks, even if multiple
local maxima existed. TopoSeg also located hundreds of small
(< 0.1m? hummock features that were not captured with manual
delineation, so we limited our statistical analysis to hummocks > 0.1
m?. Size distributions for both area and volume were statistically in-
distinguishable for both t-test (p-value = 0.84 and 0.51, respectively)
and Kolmogorov-Smirnov test (p-value = 0.40 and 0.88, respectively;
Fig. 13). Removing small hummocks resulted in a total loss of 6.58% of
hummock area and 3.58% hummock volume from our analysis. We also
matched manual- and algorithm-delineated hummock point clouds to
pair hummocks from both approaches for a more quantitative error
assessment (Fig. 14). Algorithm-delineated hummock area, perime-
ter:area, and volume estimates had 23%, 19.6%, and 24.1% RMSE,
respectively, and the estimates either had low bias or were negatively
biased (—9.8%, 0.2%, and —11.9%, respectively).

5. Discussion

Fine-scale topographic variation has traditionally been extremely
difficult to quantify, but terrestrial LiDAR has enabled automated as-
sessment the microtopography in wetland systems that influences
ecological processes. We present an efficient, precise, and accurate
method of reconstructing  centimeter-scale  variation  in

10

microtopography, enabling accurate wetland classification and geo-
metric quantification of individual microtopographic features that
holds the potential to standardize wetland microtopographic analysis
and thereby improve insights into wetland form and function.

5.1. Site-level surface model validation

Site characteristics, such as understory vegetation and inundation,
strongly influence model error. Across all site types, the most dominant
direct control on surface model error was the LiDAR return density at
the ground surface (Fig. 7A). Our analysis of surface density and field
observations show the effect of understory vegetation was highest in
sites with relatively even cover of grasses, as opposed to sites with
clumped, but more dense vegetation, interspersed throughout the site.
Other work attempting to capture microtopography with TLS has
highlighted return density at the surface and occlusion as a main factor
affecting surface reconstruction (Anderson et al., 2010; Barneveld et al.,
2013; Baltensweiler et al., 2017; Table 3). In our case, complete oc-
clusion by dense grasses resulted in a positive bias (as much as 20 cm, in
some instances) in the surface models, because the initial fine-resolu-
tion surface model relies on the lowest possible return in a specific grid
cell (Fig. 7C). A potential avenue for improvement of surface models in
sites with grasses could be through more extensive or adaptive filtering
of spikes and outliers with site-dependent parameters (see Section
3.2.2).

The L sites had the densest and tallest grass coverage and the
highest error and bias. In contrast, T sites had less dense grasses, but
had a dense understory of other growth forms (e.g., shrubs and sap-
lings). Yet, T sites had comparable error to more open and less occluded
sites, suggesting this type of dense understory did not substantially
inhibit laser pulses from reaching the underlying surface. We conclude
the high-density TLS sampling scheme contributed to the substantially
lower than expected model error in the T sites by mitigating the amount
of occluded areas. Moreover, the vegetation clumping at T sites, even in
the case of dense understory conifers, was less detrimental to model
error than the even density of tall grasses at L sites.

The D sites were the least occluded and had minimal error in the
surface models, but several were inundated with water, potentially
weakening the LiDAR return strength and positively biasing the surface
model in hollow depressions. As such, we suggest that future TLS field
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Fig. 7. Binned error of the surface model reconstruction at validation points and associated point cloud density for the [A] three site types. [B-C] For all sites, as point
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and LiDAR return intensity.

campaigns prioritize dry conditions, or use a TLS unit with a laser
wavelength outside of the water absorption range (e.g., 532 nm instead
of 905 nm; Milan et al., 2010). Surprisingly, we found no significant
relationship between LiDAR return strength and surface model error
(Fig. S6, Supplementary Material), suggesting the high-resolution scans
may have compensated for a lower number of returns at wet or in-
undated surfaces. Considering the low error at T sites, the small in-
crease in sampling time with the dense, 10 m gridded scan configura-
tion may be the best approach, even for open understory depression
sites. The range of site characteristics in this study spanned near-ideal
to less-than-desirable scenarios for TLS application, highlighting the
relative stability of TLS-based surface reconstruction and providing
clear expectations in surface model reconstruction error moving for-
ward with similar wetland systems.

5.2. Sensitivity analysis of model resolution

Fine scale wetland microtopography requires high resolution DEMs
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for precise and accurate surface reconstruction. Our sensitivity analysis
results suggest surface model resolution strongly controls surface model
error, explaining higher errors in previous microtopography studies
using more coarse surface models (Table 3). RMSE increased linearly
with incremental decreases in resolution from 1 to 50 cm (Fig. 8). The
general upward trend of RMSE with decreasing resolution suggests fine-
scaled surface variability in hummock and hollow features are unable to
be accurately captured without appropriately detailed remote sensing
techniques, such as TLS. To a lesser extent, lower resolution models
became more positively biased leading to minor model overestimation
of the true microtopographic surface. Bias increased until approxi-
mately 10-20 cm resolution, above which local microtopographic highs
and lows were less accurate. This trend explains the positively biased
model surface and the stability in bias and error with lower resolution
models. These findings suggest high resolution surface models
(1-10 cm) are necessary to accurately capture fine-scale variation in
microtopography in many wetland systems. Consequently, we expect
that coarse resolution (~0.5-2 m) surface models in similar wetlands
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Fig. 8. Site-level sensitivity analysis of RMSE and bias with varying model resolution from 1 to 50 cm (top) and 1 to 200 cm (bottom). RMSE and bias increased with
coarsening resolution for L and T sites, while D sites remained stable. The L sites had the highest model error, while T and D sites are more precise and accurate.
Model error remained stable at approximately 50 cm resolution. See Table S1 for average RMSE and bias under different model resolutions.

derived from airborne LiDAR (Richardson et al., 2010), Unmanned
Aerial Vehicle (UAV) LiDAR, or UAV structure from motion (SFM;
Mercer and Westbrook, 2016; Kalacska et al., 2017; Lovitt et al., 2017)
may be inadequate to capture the vertical and horizontal structure of
microtopographic features due to resolution limitations alone (Table 3).

5.3. Sensitivity analysis of hummock classification

Accurate classification of microtopographic features is critical for
quantifying biogeochemical processes in wetlands. We considered
variables typical in landform classification to classify our microtopo-
graphic surface models as hummocks or hollows. The DEM, roughness,
and TRI were the best microtopographic predictors (Fig. 10). We an-
ticipated LiDAR return intensity would provide additional explanatory
power for the classification since hollows tended to be wetter, reducing
return intensity at the 905 nm wavelength, but this variable did not add
additional explanatory power to the classification (Table S2). The
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included variable set showed notable differences between hummock
and hollow features, but all products, other than return intensity, were
directly derived from the surface model and structural in nature. Ad-
ditional spectral information could be useful in classifying wetland
microtopography. For example, past work has leveraged multispectral
datasets with airborne LiDAR to improve wetland classification
(Brennan and Webster, 2006; Difebo et al., 2015; Genc et al., 2005;
Gilmore et al., 2008; Morris et al., 2005; Rapinel et al., 2015). Spectral
data can be added to TLS data, as many commercial instruments include
RGB cameras for full color mapping to the point cloud, but the increase
in acquisition time and variation in lighting conditions may not justify
the small gains in classification accuracy. Applying our methodology to
UAV LiDAR datasets may add spectral information that would further
improve accuracy.

DEM resolution impacts microtopographic classification accuracy
(Fig. 12). For all machine learning classification methods, the most
accurate resolution for identifying hummock features was 25cm.
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Fig. 9. Example surface models and products used to evaluate hummock classification accuracy at site D2 under resolutions ranging from 1 cm to 1 m, from left to
right. All products were created directly from a DEM of the same resolution (top row). Roughness, terrain ruggedness index (TRI), and slope effectively highlight
hummock features between 10 and 25 cm. LiDAR return intensity (not shown), did not clearly highlight hummock or hollow areas.
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Fig. 10. Site-level sensitivity analysis of variable importance using random forest with varying model resolution (1 cm to 1 m) at site D2. At every resolution, the
DEM is the best explanatory variable for classifying hummocks and hollows, followed by roughness, terrain ruggedness index (TRI), and slope. LiDAR intensity did
not provide any explanatory power for the classification. At course resolutions, the DEM and TRI were the best for classifying hummocks and hollows. See Table S2
(Supplementary Material) for absolute and relative variable importance output.
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Fig. 11. Site-level sensitivity analysis of model resolution and five methods of classifying hummock (grey) and hollow (black) features at site D2. We compared DTA
thresholding (DTA), random forest (RF), maximum likelihood (ML), support vector machines (SVM), and k-nearest neighbor (k-NN) at model resolutions ranging
from 1 cm to 1 m (fine to coarse from left to right). See Fig. S2 for the manually classified hummock and hollow raster used to assess the automatic classification
approaches. The DTA approach retained most areas manually classified as hummock (grey), making it ideal for the hummock feature delineation, but underestimated
hollow area. Of the machine learning techniques, maximum likelihood classification performed the best at a range of resolutions, with 70% hummock classification
accuracy at 25 cm resolution.
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Fig. 12. [A] Hummock classification accuracy and [B] Kappa statistic at model resolutions ranging from 1 cm to 1 m, for five hummock classification methods. The
DTA threshold classification effectively captured 91% of the hummock area, but underestimated total hollow area (overall accuracy = 65%, Kappa = 0.33). The
machine learning classification approaches performed best at 25 cm resolution. For hummock classification, maximum likelihood performed the best (70%), followed
by random forest (62%), k-nearest neighbor (59%), and support vector machines (39%). Beyond 25 cm, the accuracy of all machine learning hummock classification
methods decreased with decreasing resolution. Overall classification accuracy, distinguishing between hummocks and hollows, was best using maximum likelihood
classification at 25 cm resolution (79%). See Table S3 (Supplementary Material) for overall, hummock, and hollow accuracy at the tested resolutions.

Accuracy increased as model resolution decreased across the 1 cm to products like TRI, roughness, and slope to have a fixed window size,
25cm range. Based on visual interpretation of the classification independent of model resolution, may improve microtopographic fea-
(Fig. 11), we attribute the increase in accuracy to a “smoothing” effect ture classification.
of the surface model from 1 cm to 25 cm, where the topographic pro- Classification method should be chosen carefully considering the
ducts produce more consistent estimates at a given location. For more high dependence on surface model resolution. Maximum likelihood
reliable local estimates of DEM-derived products, smoothing should be classification was consistently the most accurate classification method,
considered in surface models finer than 25 cm resolution. A portion of performing best at 25cm resolution. Compared to other methods,
the effect may be scale dependent, so varying the calculation of certain maximum likelihood classification accuracy increased dramatically
A B
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Fig. 13. Distribution comparison for manual and algorithm-delineated hummocks. We compared [A] area and [B] volume size distributions and tested for statistical
similarity. The algorithm identified a large number of small (< 0.1 m?) hummock features (not shown here) that were not manually delineated, but only accounted
for 6.58% of the total hummock area and 3.58% of hummock volume. To compare the distributions equally, we limited the analysis to the range shown above for the
Kolmogorov Smirnov test (p-values shown).

15



A.E.L. Stovdll, et al.

Remote Sensing of Environment 232 (2019) 111271

A 5] RMSE=0.24 m? (23 %) B 5] rmsE-089m? m2(19.6 %) c RMSE =0.06 m® ( 24.1 %)
BIAS=-0.1 m” (9.8 %) o« BIAS=0.01m?m2 (0.2 %) BIAS =-0.03 m® (- 11.9 %) °
€
~ £ —
E 6 3 ‘qu 24
F < £
3 £ 3
g 4 & g
3 B =
s £ 5 £
5 a £
27 g
g <
S
Z
04 0 04
0 2 4 6 8 0 5 10 15 0 1 2

Manual Delineated Area (m?)

Manual Delineated Perimeter:Area (m m?)

Manual Delineated Volume (m®)

Fig. 14. Assessment of hummock delineation method for retrieving feature-level [A] area, [B] perimeter:area ratio, and [C] volume estimates. Points are colored
according to sites with differing levels of hummock complexity. The depression site (D2; light green) had smaller hummocks with low edge complexity while the
transition site (T1; blue) had larger, more complex hummock shapes. The dashed grey line represents the 1:1 line. See Fig. S6 for a visual comparison of the manual
and automatically detected hummock features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

from 43% to 70% from 1 cm to 25 cm resolution (Fig. 11). In contrast,
support vector machines (SVD) should be avoided for high-resolution
classification of microtopography based on poor performance in this
analysis. Upon visual inspection of the SVD method classification, we
found the method was most sensitive to steep sloped areas, on the outer
edge of hummocks, but otherwise inaccurate. K-nearest neighbor clas-
sification accuracy followed a similar pattern, albeit slightly lower, as
random forest and maximum likelihood. While we limited our analysis
of classification method accuracy to those commonly used with land-
form classification, other methods may be promising under certain
conditions.

5.4. Hummock delineation and error assessment

Hummock- and hollow-scale feature delineation provides new and
relevant information on microtopographic structures in wetlands. To
our knowledge, no previous work has attempted to delineate micro-

topographic features using terrestrial LiDAR. TopoSeg — our novel

Table 3

adaptation of an airborne LiDAR forestry tool typically used for tree
segmentation — allows for hummock and hollow classification and
segmentation that was previously prohibitively time consuming and
qualitative (Nungesser, 2003; Lorente et al., 2012). Factors that control
the size, shape, and distribution of wetland hummocks remain an open
question (Larsen and Harvey, 2010, Heffernan et al., 2013) with im-
portant global modeling (Shi et al, 2015) and restoration (US
Environmental Protection Agency, 2015; Creed et al., 2017) ramifica-
tions, but this work presents a first attempt to rapidly quantify these
features using an objective standardized methodology.

Manual hummock classification is inherently subjective due to edge
complexity, posing a major challenge for efficient manual assessment of
precision and accuracy of the TopoSeg method. For instance, Lovitt
et al. (2014) reported the majority of hummock misclassification oc-
curred at the boundary of hummock and hollow areas, calling into
question the very definition of the hummock edge. For this reason, we
compared hummock level statistics such as total area, length-area ratio,
and volume at two sites, where manual delineation was feasible and our

Comparison of resolution and validation error from past studies quantifying high-resolution wetland topography. See Supplementary Material for more details on

each validation method.

Technique Device Location Resolution (m) Extent Elevation error statistics Reference
(ha) RMSE (m) Bias (m)
TLS Faro Focus 120 3D Swamps, Minnesota 0.01 0.09 0.0367 0.0126 This study
Leica HDS 3000 Ombrotrophic bog, UK 0.1 0.0079 0.108-0.175 Anderson et al., 2010
Faro Focus 120 3D Forest, 0.2 2 0.12 —0.05 Baltensweiler et al., 2017
Switzerland
Leica ScanStation2 Semiarid hillslope, Spain 0.001-0.002 Rodriguez-Caballero et al., 2016
ALS Riegl VZ-1000 m Forest, 0.2 2 0.15 -0.1 Baltensweiler et al., 2017
Switzerland
Mangroves, Australia 0.3 92 0.042 Knight et al., 2009
Optech ALTM 2050 Upland plains, Canada 0.3 24,000 0.14-0.16 Hopkinson et al., 2005
Peatland, UK 0.5 0.01 0.029 0.0004 Luscombe et al. 2015
Leica ALS70 Floodplains, Poland 0.5 7300 0.4 0.13 Miroslaw et al. 2016
Treed bog, Canada 0.76 61 0.84 0.47 Lovitt et al., 2017
Leica ALS50 Mangroves, Australia 1 20 0.061 0.036 Griffin et al., 2010
Floodplains, Australia 1 5500 0.02-0.03 0.08-0.11 Rayburg et al., 2009
Optech ALTM 3100 Peatlands, Canada 1 31-1500 0.14 = 0.07 Langlois et al., 2017
Peatlands, Upper Midwest USA 1.8 1330- 1840 0.0988 Richardson et al., 2010
SFM Canon 550D digital SLR camera Mossy area, East Antarctica 0.02 2 0.044 0.005 Lucieer et al., 2014
Panasonic Lumix DMC-GH2 Paleological site, western turkey — 0.042 5.5 0.159 Roosevelt, 2014
Canon PowerShot D10 Alpine peatland, Canada 0.39 0.044-0.138  0.23-0.54 Mercer and Westbrook, 2016
Aeryon Scout Treed bog, Alberta Canada 0.59 61 0.13-0.40 —0.1- 0.23 Lovitt et al., 2017
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confidence was higher. Delineation error stayed relatively constant
throughout the hummock size range, suggesting site-level estimates are
likely unbiased and our method is suitable for upscaling. As such, this
validation approach could be adaptable in similar systems such as bogs,
with larger and more easily identifiable features. Notably, superior
small hummock identification compared to manual observation is evi-
dent in the present algorithm given the large number of small hum-
mocks (< 0.1 m?) delineated at each site. While small hummocks may
only modestly increase total site-level hummock area and volume, large
numbers of small hummocks can dramatically increase site-level peri-
meter:area, disproportionately increasing the number of sharp redox
gradients and biogeochemical hot spots (cf. Cohen et al. 2016). Our
method overcomes some of the issues with hummock size definition,
since it is automatic and of extremely high resolution, requiring no
additional effort to capture small scale features. Nonetheless, we expect
further developments and refinements to the TopoSeg algorithm that
will allow for rapid quantitative assessment of hummock and hollows,
effectively reducing reliance on manual methods and ambiguous mi-
crotopographic definitions.

5.5. Future work: upscaling and applications

The high-resolution approach highlighted in this work for quanti-
fying wetland microtopography represents an important step to bridge
current gaps in measurement scales. TLS captures a scale of topographic
variation that can be linked to a suite of wetland biogeochemical pro-
cesses (e.g., nutrient and carbon cycling; Baltensweiler et al., 2017;
Lovitt et al., 2014, Cheng and Basu, 2017) and habitat conditions (e.g.,
Malhotra et al., 2016; Celik and Vre$, 2018). As such, high-resolution
microtopographic models will facilitate upscaling to more extensive
remote sensing approaches, allowing ecosystem-scale elemental storage
and flux estimates that integrate dynamic and heterogeneous surface
processes. Improved resolution from future UAV LiDAR, or structure
from motion in low density vegetation, may enable upscaling by cov-
ering larger spatial extents, while providing high-resolution data for
microtopographic surface reconstruction and delineation described
here. Moreover, the TopoSeg algorithm can easily be applied to
equivalent high-resolution 3D data acquired with UAV LiDAR in similar
wetland systems (Lovitt et al., 2017; Lovitt et al., 2014). Moving for-
ward, a focus on upscaling will be the most important next step in tying
microtopographic processes to complex ecosystem modeling efforts
(Miao et al., 2017).

The algorithms in this study enable larger landscape-scale high-re-
solution microtopographic surface reconstruction in wetland systems
that will be critical in better estimating fine-scale variation in wetland
processes that influence broader landscape-scale phenomena. Wetlands
have the highest density of soil carbon globally while dis-
proportionately holding the largest fraction of global soil carbon
(20-30%; Lal, 2008). The spatial distribution of these soil carbon stocks
and associated emissions within and across systems is directly influ-
enced by microtopography (Page et al., 2007; Sundari et al., 2012),
through modulation of soil saturation and associated decomposition
rates (Holden, 2005; Strack et al., 2006). High spatial variability in soil
carbon pools and the simplification of soil profiles as planar surfaces
across broad scales (Kimble et al., 2002) makes landscape-scale soil
carbon estimates uncertain (Mitsch et al., 2013), likely resulting in a
systematic underestimation of carbon stored in wetlands. Accurate es-
timates of current wetland carbon stores are crucially important given
their role in global budgets and their vulnerability to climate change via
enhanced decomposition rates (Macreadie et al., 2013). By leveraging
the algorithms described in this study to accurately resolve, or even
predict, microtopographic distributions in wetlands over large spatial
extents we anticipate considerable improvements in landscape or even
global biogeochemical models (Shi et al., 2015, Lehmann and Rillig,
2014).
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6. Conclusion

Traditional approaches of quantifying wetland microtopography
lack detail and spatial continuity, limiting inference of wetland patterns
and processes. In the current study, we developed and assessed a
method of high-resolution microtopographic surface reconstruction,
classification, and feature delineation using terrestrial laser scanning
that covers entire 0.09 ha portions of wetlands. Our results indicate
high-resolution surface models, on the order of 1-10 cm, are necessary
to precisely capture vertical and horizontal microtopographic structure,
with model error increasing with decreasing DEM resolution, losing
sensitivity to microtopography above 50 cm. Hummock and hollow
features are most accurately classified at 25 cm resolution using max-
imum likelihood, but DTA threshold classification effectively retains
hummock areas for individual feature delineation. Our novel feature
delineation algorithm — TopoSeg — was precise and accurate, enabling
more consistent future microtopography characterization across a range
of remote sensing platforms. Our approach is currently the most precise
method of quantifying microtopography in wetland systems using ter-
restrial laser scanning and can be adapted for broad applicability to
similar systems globally.
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